We investigate in some detail a recently suggested general class of ensembles
of sparse undirected random graphs based on a hidden stub-coloring, with or
without the restriction to nondegenerate graphs. The calculability of local and
global structural properties of graphs from the resulting ensembles is
demonstrated. Cluster size statistics are derived with generating function
techniques, yielding a well-defined percolation threshold. Explicit rules are
derived for the enumeration of small subgraphs. Duality and redundancy is
discussed, and subclasses corresponding to commonly studied models are
identified.Comment: 14 pages, LaTeX, no figure