179 research outputs found

    Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI

    Get PDF
    Blood oxygen contrast-functional magnetic resonance imaging (fMRI) signals are a convolution of neural and vascular components. Several studies indicate that task-related (T-fMRI) or resting-state (R-fMRI) responses linearly relate to hypercapnic task responses. Based on the linearity of R-fMRI and T-fMRI with hypercapnia demonstrated by different groups using different study designs, we hypothesized that R-fMRI and T-fMRI signals are governed by a common physiological mechanism and that resting-state fluctuation of amplitude (RSFA) should be linearly related to T-fMRI responses. We tested this prediction in a group of healthy younger humans where R-fMRI, T-fMRI, and hypercapnic (breath hold, BH) task measures were obtained form the same scan session during resting state and during performance of motor and BH tasks. Within individual subjects, significant linear correlations were observed between motor and BH task responses across voxels. When averaged over the whole brain, the subject-wise correlation between the motor and BH tasks showed a similar linear relationship within the group. Likewise, a significant linear correlation was observed between motor-task activity and RSFA across voxels and subjects. The linear rest–task (R–T) relationship between motor activity and RSFA suggested that R-fMRI and T-fMRI responses are governed by similar physiological mechanisms. A practical use of the R–T relationship is its potential to estimate T-fMRI responses in special populations unable to perform tasks during fMRI scanning. Using the R–T relationship determined from the first group of 12 healthy subjects, we predicted the T-fMRI responses in a second group of 7 healthy subjects. RSFA in both the lower and higher frequency ranges robustly predicted the magnitude of T-fMRI responses at the subject and voxel levels. We propose that T-fMRI responses are reliably predictable to the voxel level in situations where only R-fMRI measures are possible, and may be useful for assessing neural activity in task non-compliant clinical populations

    Task-Dependent Individual Differences in Prefrontal Connectivity

    Get PDF
    Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior

    The Effects of Acute Stress on Human Prefrontal Working Memory Systems

    Get PDF
    We examined the relationship between acute stress and prefrontal-cortex (PFC) based working memory (WM) systems using behavioral (Experiment 1) and functional magnetic resonance imaging (fMRI; Experiment 2) paradigms. Subjects performed a delayed-response item-recognition task, with alternating blocks of high and low WM demand trials. During scanning, participants performed this task under three stress conditions: cold stress (induced by cold-water hand-immersion), a room temperature water control (induced by tepid-water hand-immersion), and no-water control (no hand-immersion). Performance was affected by WM demand, but not stress. Cold stress elicited greater salivary cortisol readings in behavioral subjects, and greater PFC signal change in fMRI subjects, than control conditions. These results suggest that, under stress, increases in PFC activity may be necessary to mediate cognitive processes that maintain behavioral organization

    Evidence for Multiple Manipulation Processes in Prefrontal Cortex

    Get PDF
    The prefrontal cortex (PFC) is known to subserve working memory (WM) processes. Brain imaging studies of WM using delayed response tasks (DRTs) have shown memory-load-dependent activation increases in dorsal prefrontal cortex (PFC) regions. These activation increases are believed to reflect manipulation of to-be-remembered information in the service of memory-consolidation. This speculation has been based on observations of similar activation increases in tasks that overtly require manipulation by instructing participants to reorder to-be-remembered list items. In this study, we tested the assumption of functional equivalence between these two types of WM tasks. Participants performed a DRT under two conditions with memory loads ranging from 3 to 6 letters. In an “item-order” condition, participants were required to remember letters in the order in which they were presented. In a “reordering” condition, participants were required to remember the letters in alphabetical order. Load-related activation increases were observed during the encoding and maintenance periods of the order maintenance condition, whereas load-related activation decreases were observed in the same periods of the reordering condition. These results suggest that (1) the neural substrates associated with long-list retention and those associated with reordering are not equivalent, (2) cognitive processes associated with long-list retention may be more closely approximated by item-order maintenance than by reordering, and (3) multiple forms of WM manipulation are dissociable on the basis of fMRI data

    Mechanisms of Interference in Vibrotactile Working Memory

    Get PDF
    In previous studies of interference in vibrotactile working memory, subjects were presented with an interfering distractor stimulus during the delay period between the target and probe stimuli in a delayed match-to-sample task. The accuracy of same/different decisions indicated feature overwriting was the mechanism of interference. However, the distractor was presented late in the delay period, and the distractor may have interfered with the decision-making process, rather than the maintenance of stored information. The present study varies the timing of distractor onset, (either early, in the middle, or late in the delay period), and demonstrates both overwriting and non-overwriting forms of interference

    Capacity-Speed Relationships in Prefrontal Cortex

    Get PDF
    Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.National Center for Research Resources (U.S.) (grant UL1RR025011)National Institutes of Health (U.S.) (grant NIH RO1 DC05375)Wallace H. Coulter FoundationNational Institute of Mental Health (U.S.) (Challenge Grant RC1MH090912-01

    Practice Induces Function-Specific Changes in Brain Activity

    Get PDF
    Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task.To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task.Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice.This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information

    Was ist "Populäre Musik"? : Überlegungen in eigener Sache

    Get PDF
    Many common disorders across the lifespan feature impaired working memory (WM). Reported benefits of a WM training program include improving inattention in daily life, but this has not been evaluated in a meta-analysis. This study aimed to evaluate whether one WM training method has benefits for inattention in daily life by conducting a systematic review and meta-analysis.We searched Medline and PsycINFO, relevant journals and contacted authors for studies with an intervention and control group reporting post-training estimates of inattention in daily life. To reduce the influence of different WM training methods on the findings, the review was restricted to trials evaluating the Cogmed method. A meta-analysis calculated the pooled standardised difference in means (SMD) between intervention and control groups.A total of 622 studies were identified and 12 studies with 13 group comparisons met inclusion criteria. The meta-analysis showed a significant training effect on inattention in daily life, SMD=-0.47, 95% CI -0.65, -0.29, p<.00001. Subgroup analyses showed this significant effect was observed in groups of children and adults as well as users with and without ADHD, and in studies using control groups that were active and non-adaptive, wait-list and passive as well as studies using specific or general measures. Seven of the studies reported follow-up assessment and a meta-analysis showed persisting training benefits for inattention in daily life, SMD=-0.33, 95% CI -0.57 -0.09, p=.006. Additional meta-analyses confirmed improvements after training on visuospatial WM, SMD=0.66, 95% CI 0.43, 0.89, p<.00001, and verbal WM tasks, SMD=0.40, 95% CI 0.18, 0.62, p=.0004.Benefits of a WM training program generalise to improvements in everyday functioning. Initial evidence shows that the Cogmed method has significant benefits for inattention in daily life with a clinically relevant effect size

    Neural Correlates of the Difference between Working Memory Speed and Simple Sensorimotor Speed: An fMRI Study

    Get PDF
    The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM) for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task) and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC) and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings

    The neural substrate of positive bias in spontaneous emotional processing

    Get PDF
    Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control
    corecore