38 research outputs found

    Trastuzumab Mediated T-Cell Response against HER-2/Neu Overexpressing Esophageal Adenocarcinoma Depends on Intact Antigen Processing Machinery

    Get PDF
    BACKGROUND: Esophageal adenocarcinoma (EAC) is a highly aggressive disease with poor prognosis, which frequently exhibits HER-2 gene amplification. Trastuzumab, the humanized antibody against HER-2, has potent growth inhibitory effects on HER-2 overexpressing cancers. One effect of trastuzumab is that it causes HER-2 receptor internalization and degradation, enhancing presentation of HER-2 epitopes on MHC-Class I molecules. This enhances the ability of HER-2 specific cytotoxic T lymphocytes (CTLs) to recognize and kill cancer cells. Novel strategies targeting the HER-2 receptor either directly by trastuzumab and/or indirectly by inducing a CTL response against HER-2 epitopes with, for instance, DC immunotherapy and consequently combining these strategies might prove to be very effective. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report that trastuzumab has potent growth inhibitory effects on two HER-2 overexpressing EAC cell lines OE33 and OE19. However, we found that trastuzumab and HER-2 specific CTLs act synergistically in inducing tumor lysis in OE33 but not in OE19. We discovered that in OE19 this deficient response is due to a down-regulation of the Transporter Associated with Antigen Processing-2 (TAP-2). TAP-2 is an important member of the Antigen Processing Machinery (APM), and is one of the essential elements for loading antigens on MHC class I molecules. Importantly, we demonstrated that by inducing re-expression of TAP-2 in OE19 with INF-γ treatment or by incubating the cells with INF-γ producing CTLs, the specific anti HER-2 CTL tumor lysis response and synergistic effect with trastuzumab can be restored. CONCLUSION: An inefficient response of HER-2 overexpressing EAC to trastuzumab and/or DC immunotherapy can be due to a down-regulated TAP-2 expression and thus a deficient APM. Future studies combining trastuzumab with IFN-γ and/or immune-therapies inducing potent anti HER-2 CTL responses could lead to an effective combinatorial strategy for successful treatment of HER-2 overexpressing but APM defective cancer

    Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus

    Get PDF
    abstract: Surveillance of Barrett’s oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm[superscript 2] (95% CI: 0.09–4.06) per year, often involving the p16 locus. This suggests a lack of strong clonal selection in Barrett’s and that the malignant potential of ‘benign’ Barrett’s lesions is predetermined, with important implications for surveillance programs.The final version of this article, as published in Nature Communications, can be viewed online at: https://www.nature.com/articles/ncomms1215

    CD200 Receptor Controls Sex-Specific TLR7 Responses to Viral Infection

    Get PDF
    Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200−/− mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R

    An in vitro co-culture model of esophageal cells identifies ascorbic acid as a modulator of cell competition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary dynamics between interacting heterogeneous cell types are fundamental properties of neoplastic progression but can be difficult to measure and quantify. Cancers are heterogeneous mixtures of mutant clones but the direct effect of interactions between these clones is rarely documented. The implicit goal of most preventive interventions is to bias competition in favor of normal cells over neoplastic cells. However, this is rarely explicitly tested. Here we have developed a cell culture competition model to allow for direct observation of the effect of chemopreventive or therapeutic agents on two interacting cell types. We have examined competition between normal and Barrett's esophagus cell lines, in the hopes of identifying a system that could screen for potential chemopreventive agents.</p> <p>Methods</p> <p>One fluorescently-labeled normal squamous esophageal cell line (EPC2-hTERT) was grown in competition with one of four Barrett's esophagus cell lines (CP-A, CP-B, CP-C, CP-D) under varying conditions and the outcome of competition measured over 14 days by flow cytometry.</p> <p>Results</p> <p>We demonstrate that ascorbic acid (vitamin C) can help squamous cells outcompete Barrett's cells in this system. We are also able to show that ascorbic acid's boost to the relative fitness of squamous cells was increased in most cases by mimicking the pH conditions of gastrointestinal reflux in the lower esophagus.</p> <p>Conclusions</p> <p>This model is able to integrate differential fitness effects on various cell types, allowing us to simultaneously capture effects on interacting cell types without having to perform separate experiments. This model system may be used to screen for new classes of cancer prevention agents designed to modulate the competition between normal and neoplastic cells.</p

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel

    A comparative analysis by SAGE of gene expression profiles of Barrett's esophagus, normal squamous esophagus, and gastric cardia

    No full text
    Background & Aims: The metaplastic process In which the normal squamous epithelium of the distal esophagus is replaced by columnar-lined epithelium, known as Barrett's esophagus (BE), is poorly understood. The aim of this study was to define, analyze, and compare transcription profiles of BE, normal cardia epithelium, and squamous epithelium to gain more Insight into the process of metaplasia and to identify uniquely expressed genes in these epithelia. Methods: Serial analysis of gene expression was applied for obtaining transcription libraries of biopsy specimens taken from a BE-affected patient with intestinal type of metaplasia and from normal squamous and gastric cardia epithelia. Validation of results by reverse-transcription polymerase chain reaction and immunoblotting was performed using tissues of 20 patients with BE. Results: More than :120,000 tags were sequenced. Between BE and squamous 776, and between BE and gastric cardia 534 tags were significantly differentially expressed (

    Lack of CD200 Enhances Pathological T Cell Responses during Influenza Infection

    No full text
    Influenza virus infection can be accompanied by life-threatening immune pathology most likely due to excessive antiviral responses. Inhibitory immune receptors may restrain such overactive immune responses. To study the role of the inhibitory immune receptor CD200R and its ligand CD200 during influenza infection, we challenged wild-type and CD200(-/-) mice with influenza virus. We found that CD200(-/-) mice in comparison to wild-type controls when inoculated with influenza virus developed more severe disease, associated with increased lung infiltration and lung endothelium damage. CD200(-/-) mice did develop adequate adaptive immune responses and were able to control viral load, suggesting that the severe disease was caused by a lack of control of the immune response. Interestingly, development of disease was completely prevented by depletion of T cells before infection, despite dramatically increased viral load, indicating that T cells are essential for the development of disease symptoms. Our data show that lack of CD200-CD200R signaling increases immune pathology during influenza infection, which can be reduced by T cell depletion. The Journal of Immunology, 2009, 183: 1990-1996
    corecore