857 research outputs found
Value, Size and Momentum Portfolios in Real Time: The Cross-Section of South African Stocks
We implement a recursive out-of-sample method to examine anomalies-based ex-ante predictability in the cross-section of stock returns. We obtain a series of simulated out-of-sample returns, consistent with investors using only prior information when choosing predictor variables. We find that, by commonly used performance criteria, real-time trading strategies based on size, value and momentum effects would not consistently outperform a passive index of South African stocks - despite consistent in-sample excess returns. Our results suggest that the empirical relationship between the anomalous factors and cross-sectional average returns is unstable.anomalies; real-time predictability; long/short portfolios; emerging markets; South Africa
Knight Shift and Nuclear Spin Relaxation Rate in a Charge-Ordered State of the One-Dimensional Extended Hubbard Model at Quarter Filling
We investigate Knight shift and nuclear spin relaxation rate in a charge
ordered state of the one-dimensional extended Hubbard model with a quarter
filled band by using RPA around the mean-field solution. It is shown that both
quantities show splitting below the critical temperature of the charge order,
as is experimentally observed. The relationship between the mount of the
splitting in the both quantities and the charge disproportionation rate is
discussed.Comment: 7 pages, 6 figures, submitted to J. Phys. Soc. Jp
A Na I Absorption Map of the Small-Scale Structure in the Interstellar Gas Toward M15
Using the DensePak fiber optic array on the KPNO WIYN telescope, we have
obtained high S/N echelle spectra of the Na I D wavelength region toward the
central 27" x 43" of the globular cluster M15 at a spatial resolution of 4".
The spectra exhibit significant interstellar Na I absorption at LSR velocities
of +3 km/s (LISM component) and +68 km/s (IVC component). Both components vary
appreciably in strength on these scales. The derived Na I column densities
differ by a factor of 4 across the LISM absorption map and by a factor of 16
across the IVC map. Assuming distances of 500 pc and 1500 pc for the LISM and
IVC clouds, these maps show evidence of significant ISM structure down to the
minimum scales of 2000 AU and 6000 AU probed in these absorbers. The
smallest-scale N(Na I) variations observed in the M15 LISM and IVC maps are
typically comparable to or higher than the values found at similar scales in
previous studies of interstellar Na I structure toward binary stars. The
physical implications of the small and larger-scale Na I features observed in
the M15 maps are discussed in terms of variations in the H I column density as
well as in the Na ionization equilibrium.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter
B-type supergiants in the SMC: Rotational velocities and implications for evolutionary models
High-resolution spectra for 24 SMC and Galactic B-type supergiants have been
analysed to estimate the contributions of both macroturbulence and rotation to
the broadening of their metal lines. Two different methodologies are
considered, viz. goodness-of-fit comparisons between observed and theoretical
line profiles and identifying zeros in the Fourier transforms of the observed
profiles. The advantages and limitations of the two methods are briefly
discussed with the latter techniques being adopted for estimated projected
rotational velocities (\vsini) but the former being used to estimate
macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant
degree of rotational broadening (\vsini 90 \kms). For the remaining
targets, the distribution of projected rotational velocities are similar in
both our Galactic and SMC samples with larger values being found at earlier
spectral types. There is marginal evidence for the projected rotational
velocities in the SMC being higher than those in the Galactic targets but any
differences are only of the order of 5-10 \kms, whilst evolutionary models
predict differences in this effective temperature range of typically 20 to 70
\kms. The combined sample is consistent with a linear variation of projected
rotational velocity with effective temperature, which would imply rotational
velocities for supergiants of 70 \kms at an effective temperature of 28 000 K
(approximately B0 spectral type) decreasing to 32 \kms at 12 000 K (B8 spectral
type). For all targets, the macroturbulent broadening would appear to be
consistent with a Gaussian distribution (although other distributions cannot be
discounted) with an half-width varying from approximately 20 \kms
at B8 to 60 \kms at B0 spectral types.Comment: 4 figures, 8 pages, submitted to Astronomy and Astrophysic
Atmospheric parameters and rotational velocities for a sample of Galactic B-type supergiants
High resolution optical spectra of 57 Galactic B-type supergiant stars have
been analyzed to determine their rotational and macroturbulent velocities. In
addition, their atmospheric parameters (effective temperature, surface gravity
and microturbulent velocity) and surface nitrogen abundances have been
estimated using a non-LTE grid of model atmospheres. Comparisons of the
projected rotational velocities have been made with the predictions of stellar
evolutionary models and in general good agreement was found. However for a
small number of targets, their observed rotational velocities were
significantly larger than predicted, although their nitrogen abundances were
consistent with the rest of the sample. We conclude that binarity may have
played a role in generating their large rotational velocities. No correlation
was found between nitrogen abundances and the current projected rotational
velocities. However a correlation was found with the inferred projected
rotational velocities of the main sequence precursors of our supergiant sample.
This correlation is again in agreement with the predictions of single star
evolutionary models that incorporate rotational mixing. The origin of the
macroturbulent and microturbulent velocity fields is discussed and our results
support previous theoretical studies that link the former to sub-photospheric
convection and the latter to non-radial gravity mode oscillations. In addition,
we have attempted to identify differential rotation in our most rapidly
rotating targets.Comment: Submitted to MNRAS, 16 page
A non-LTE abundance analysis of the post-AGB star ROA 5701
An analysis of high-resolution Anglo-Australian Telescope (AAT)/ University
College London Echelle Spectrograph (UCLES) optical spectra for the ultraviolet
(UV)-bright star ROA 5701 in the globular cluster omega Cen (NGC 5139) is
performed, using non-local thermodynamic equilibrium (non-LTE) model
atmospheres to estimate stellar atmospheric parameters and chemical
composition. Abundances are derived for C, N, O, Mg, Si and S, and compared
with those found previously by Moehler et al. We find a general metal
underabundance relative to young B-type stars, consistent with the average
metallicity of the cluster. Our results indicate that ROA 5701 has not
undergone a gas-dust separation scenario as previously suggested. However, its
abundance pattern does imply that ROA 5701 has evolved off the AGB prior to the
onset of the third dredge-up.Comment: 9 pages, 2 figures. Accepted for publication in MNRAS (Online Early
Iron abundances from optical Fe III absorption lines in B-type stellar spectra
The role of optical Fe III absorption lines in B-type stars as iron abundance
diagnostics is considered. To date, ultraviolet Fe lines have been widely used
in B-type stars, although line blending can severely hinder their diagnostic
power. Using optical spectra, covering a wavelength range ~ 3560 - 9200 A, a
sample of Galactic B-type main-sequence and supergiant stars of spectral types
B0.5 to B7 are investigated. A comparison of the observed Fe III spectra of
supergiants, and those predicted from the model atmosphere codes TLUSTY
(plane-parallel, non-LTE), with spectra generated using SYNSPEC (LTE), and
CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In
addition, a sample of main-sequence and supergiant objects, observed with
FEROS, reveal LTE abundance estimates consistent with the Galactic environment
and previous optical studies. Based on the present study, we list a number of
Fe III transitions which we recommend for estimating the iron abundance from
early B-type stellar spectra.Comment: 3 figures and 8 tables. Table 3 is to be published online only
(included here on last page). Accepted for publication in MNRA
The VLT-FLAMES survey of massive stars: rotation and nitrogen enrichment as the key to understanding massive star evolution
Rotation has become an important element in evolutionary models of massive
stars, specifically via the prediction of rotational mixing. Here, we study a
sample of stars, including rapid rotators, to constrain such models and use
nitrogen enrichments as a probe of the mixing process. Chemical compositions
(C, N, O, Mg and Si) have been estimated for 135 early B-type stars in the
Large Magellanic Cloud with projected rotational velocities up to ~300km/s
using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including
rotational mixing, have been generated attempting to reproduce these
observations by adjusting the overshooting and rotational mixing parameters and
produce reasonable agreement with 60% of our core hydrogen burning sample. We
find (excluding known binaries) a significant population of highly nitrogen
enriched intrinsic slow rotators vsini less than 50km/s incompatible with our
models ~20% of the sample). Furthermore, while we find fast rotators with
enrichments in agreement with the models, the observation of evolved (log g
less than 3.7dex) fast rotators that are relatively unenriched (a further ~20%
of the sample) challenges the concept of rotational mixing. We also find that
70% of our blue supergiant sample cannot have evolved directly from the
hydrogen burning main-sequence. We are left with a picture where invoking
binarity and perhaps fossil magnetic fields are required to understand the
surface properties of a population of massive main sequence stars.Comment: ApJL. 10 pages, 1 figure. Updated to match accepted versio
Detection of Voigt Spectral Line Profiles of Hydrogen Radio Recombination Lines toward Sagittarius B2(N)
We report the detection of Voigt spectral line profiles of radio
recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank
Telescope (GBT). At radio wavelengths, astronomical spectra are highly
populated with RRLs, which serve as ideal probes of the physical conditions in
molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein
shows that RRLs of higher principal quantum number (n>90) are generally
divergent from their expected Gaussian profiles and, moreover, are well
described by their respective Voigt profiles. This is in agreement with the
theory that spectral lines experience pressure broadening as a result of
electron collisions at lower radio frequencies. Given the inherent technical
difficulties regarding the detection and profiling of true RRL wing spans and
shapes, it is crucial that the observing instrumentation produce flat baselines
as well as high sensitivity, high resolution data. The GBT has demonstrated its
capabilities regarding all of these aspects, and we believe that future
observations of RRL emission via the GBT will be crucial towards advancing our
knowledge of the larger-scale extended structures of ionized gas in the
interstellar medium (ISM)
Iron abundances of B-type post-Asymptotic Giant Branch stars in globular clusters: Barnard 29 in M 13 and ROA 5701 in omega Cen
High resolution optical and ultraviolet spectra of two B-type post-Asymptotic
Giant Branch (post-AGB) stars in globular clusters, Barnard 29 in M 13 and ROA
5701 in omega Cen, have been analysed using model atmosphere techniques. The
optical spectra have been obtained with FEROS on the ESO 2.2-m telescope and
the 2d-Coud\'e spectrograph on the 2.7-m McDonald telescope, while the
ultraviolet observations are from the GHRS on the HST. Abundances of light
elements (C, N, O, Mg, Al and S) plus Fe have been determined from the optical
spectra, while the ultraviolet data provide additional Fe abundance estimates
from Fe III absorption lines in the 1875-1900 {\AA} wavelength region. A
general metal underabundance relative to young B-type stars is found for both
Barnard 29 and ROA 5701. These results are consistent with the metallicities of
the respective clusters, as well as with previous studies of the objects. The
derived abundance patterns suggest that the stars have not undergone a gas-dust
separation, contrary to previous suggestions, although they may have evolved
from the AGB before the onset of the third dredge-up. However, the Fe
abundances derived from the HST spectra are lower than those expected from the
metallicities of the respective clusters, by 0.5 dex for Barnard 29 and 0.8 dex
for ROA 5701. A similar systematic underabundance is also found for other
B-type stars in environments of known metallicity, such as the Magellanic
Clouds. These results indicate that the Fe III ultraviolet lines may yield
abundance values which are systematically too low by typically 0.6 dex and
hence such estimates should be treated with caution.Comment: 15 pages, 3 figures. Accepted for publication in MNRA
- …
