17,571 research outputs found

    Combustion chemistry of solid propellants

    Get PDF
    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process

    Ammonium-perchlorate diffusion flames - A spectrographic investigation

    Get PDF
    Spectroscopic analyses on ammonium perchlorate diffusion flames with various fuel

    Validation of Satellite Rainfall Products for Western Uganda.

    Get PDF
    Central equatorial Africa is deficient in long-term, ground-based measurements of rainfall; therefore, the aim of this study is to assess the accuracy of three high-resolution, satellite-based rainfall products in western Uganda for the 2001–10 period. The three products are African Rainfall Climatology, version 2 (ARC2); African Rainfall Estimation Algorithm, version 2 (RFE2); and 3B42 from the Tropical Rainfall Measuring Mission, version 7 (i.e., 3B42v7). Daily rainfall totals from six gauges were used to assess the accuracy of satellite-based rainfall estimates of rainfall days, daily rainfall totals, 10-day rainfall totals, monthly rainfall totals, and seasonal rainfall totals. The northern stations had a mean annual rainfall total of 1390 mm, while the southern stations had a mean annual rainfall total of 900 mm. 3B42v7 was the only product that did not underestimate boreal-summer rainfall at the northern stations, which had ~3 times as much rainfall during boreal summer than did the southern stations. The three products tended to overestimate rainfall days at all stations and were borderline satisfactory at identifying rainfall days at the northern stations; the products did not perform satisfactorily at the southern stations. At the northern stations, 3B42v7 performed satisfactorily at estimating monthly and seasonal rainfall totals, ARC2 was only satisfactory at estimating seasonal rainfall totals, and RFE2 did not perform satisfactorily at any time step. The satellite products performed worst at the two stations located in rain shadows, and 3B42v7 had substantial overestimates at those stations

    Microchemical, microphysical and adhesive properties of Apollo 11 and 12 Final report, 1 Aug. 1969 - 15 Mar. 1971

    Get PDF
    Gas exposure experiments of lunar soil with microchemical, microphysical, and adhesion analysi

    Protein structural variation in computational models and crystallographic data

    Get PDF
    Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. Simple models defined by contact topology, known as elastic network models, have been used to model a variety of systems, but the validation is typically limited to individual modes for a single protein. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational variance. Normal modes from four simple elastic network model potentials and from the CHARMM forcefield are calculated for a data set of 83 diverse, ultrahigh resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, the methods that consider all atoms have a clear edge at prediction of directionality, and the CHARMM potential produces the best agreement. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. This was illustrated by computing the dynamic correlation matrices from different potentials for a PDZ domain structure. Comparison of normal mode results with anisotropic temperature factors opens the possibility of using ultrahigh resolution crystallographic data as a quantitative measure of molecular flexibility. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity. Comparison of the dynamic correlation matrices suggests that a combination of topological and chemical potentials may help identify residues in which chemical forces make large contributions to intramolecular coupling.Comment: 17 pages, 4 figure

    Population pressure and global markets drive a decade of forest cover change in Africa\u27s Albertine Rift

    Get PDF
    Africa\u27s Albertine Rift region faces a juxtaposition of rapid human population growth and protected areas, making it one of the world\u27s most vulnerable biodiversity hotspots. Using satellite-derived estimates of forest cover change, we examined national socioeconomic, demographic, agricultural production, and local demographic and geographic variables, to assess multilevel forces driving local forest cover loss and gain outside protected areas during the first decade of this century. Because the processes that drive forest cover loss and gain are expected to be different, and both are of interest, we constructed models of significant change in each direction. Although rates of forest cover change varied by country, national population change was the strongest driver of forest loss for all countries – with a population doubling predicted to cause 2.06% annual cover loss, while doubling tea production predicted to cause 1.90%. The rate of forest cover gain was associated positively with increased production of the local staple crop cassava, but negatively with local population density and meat production, suggesting production drivers at multiple levels affect reforestation. We found a small but significant decrease in loss rate as distance from protected areas increased, supporting studies suggesting higher rates of landscape change near protected areas. While local population density mitigated the rate of forest cover gain, loss was also correlated with lower local population density, an apparent paradox, but consistent with findings that larger scale forces outweigh local drivers of deforestation. This implicates demographic and market forces at national and international scales as critical drivers of change, calling into question the necessary scales of forest protection policy in this biodiversity hotspot. Using a satellite derived estimate of forest cover change for both loss and gain added a dynamic component to more traditionally static and unidirectional studies, significantly improving our understanding of landscape processes and drivers at work

    57-Fe Mossbauer study of magnetic ordering in superconducting K_0.85Fe_1.83Se_2.09 single crystals

    Full text link
    The magnetic ordering of superconducting single crystals of K_0.85Fe_1.83Se_2.09 has been studied between 10K and 550K using 57-Fe Mossbauer spectroscopy. Despite being superconducting below T_sc ~30K, the iron sublattice in K_0.85Fe_1.83Se_2.09 clearly exhibits magnetic order from well below T_sc to its N\'eel temperature of T_N = 532 +/- 2K. The iron moments are ordered perpendicular to the single crystal plates, i.e. parallel to the crystal c-axis. The order collapses rapidly above 500K and the accompanying growth of a paramagnetic component suggests that the magnetic transition may be first order, which may explain the unusual temperature dependence reported in recent neutron diffraction studies.Comment: 6 pages, 4 figures Submitted to Phys.Rev.

    Bose Metals and Insulators on Multi-Leg Ladders with Ring Exchange

    Get PDF
    We establish compelling evidence for the existence of new quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic two-dimensional quantum phase of uncondensed itinerant bosons characterized by surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B {\bf 75}, 235116 (2007)]. In particular, motivated by a strong-coupling analysis of the gauge theory for the DBL, we study a model of hard-core bosons moving on the NN-leg square ladder with frustrating four-site ring exchange. Here, we focus on four- and three-leg systems where we have identified two novel phases: a compressible gapless Bose metal on the four-leg ladder and an incompressible gapless Mott insulator on the three-leg ladder. The former is conducting along the ladder and has five gapless modes, one more than the number of legs. This represents a significant step forward in establishing the potential stability of the DBL in two dimensions. The latter, on the other hand, is a fundamentally quasi-one-dimensional phase that is insulating along the ladder but has two gapless modes and incommensurate power law transverse density-density correlations. In both cases, we can understand the nature of the phase using slave-particle-inspired variational wave functions consisting of a product of two distinct Slater determinants, the properties of which compare impressively well to a density matrix renormalization group solution of the model Hamiltonian. Stability arguments are made in favor of both quantum phases by accessing the universal low-energy physics with a bosonization analysis of the appropriate quasi-1D gauge theory. We will briefly discuss the potential relevance of these findings to high-temperature superconductors, cold atomic gases, and frustrated quantum magnets.Comment: 33 pages, 16 figures; this is the print version, only very minor changes from v
    • …
    corecore