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SUMMARY

Normal mode analysis offers an efficient way of
modeling the conformational flexibility of pro-
tein structures. We use anisotropic displace-
ment parameters from crystallography to test
the quality of prediction of both the magnitude
and directionality of conformational flexibility.
Normal modes from four simple elastic network
model potentials and from the CHARMM force
field are calculated for a data set of 83 diverse,
ultrahigh-resolution crystal structures. While all
five potentials provide good predictions of the
magnitude of flexibility, all-atom potentials
have a clear edge at prediction of directionality,
and the CHARMM potential has the highest
prediction quality. The low-frequency modes
from different potentials are similar, but those
computed from the CHARMM potential show
the greatest difference from the elastic network
models. The comprehensive evaluation demon-
strates the costs and benefits of using normal
mode potentials of varying complexity.

INTRODUCTION

The native state of a protein is an ensemble of conformers,

deviating to some extent from the average coordinates re-

ported as the experimental structure. Knowledge of the

static structure is not sufficient for understanding the func-

tional mechanisms, which often depend on the flexibility of

protein structures. Experimental observation of conforma-

tional motion of biomolecules is becoming possible,

thanks to experimental innovation, but remains a formida-

ble challenge. Crystals can be subjected to time-resolved

experiments (Moffat, 2001), but the range of applications

is limited to reactions that can be triggered by light or trap-

ped by clever manipulations. Nuclear magnetic resonance

spectroscopy can be used to determine both the structure

and the dynamics of proteins (Lindorff-Larsen et al., 2005),
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but it is limited both by the maximum size of protein struc-

tures and by the difficulty of discrimination of slowly or

quickly exchanging dynamics (Palmer et al., 2001). Mass

spectrometry coupled with hydrogen/deuterium ex-

change and proteolysis has been used to determine

changes in the relative solvent accessibility of amide

hydrogens (Lanman and Prevelige, 2004), and single-

molecule experiments using optical trapping have

resulted in spectacular observations of the motion of mo-

tor proteins (Abbondanzieri et al., 2005). In general, direct

measurement of molecular motion remains laborious and

limited.

Computer simulations of biological macromolecules

enable detailed explorations of the conformational en-

semble near the native state (Karplus and Kuriyan,

2005). However, the computational cost of molecular dy-

namics with all-atom force fields limits the accessible

timescale of simulations, particularly of large molecular

assemblies. Thus approximate methods, such as normal

mode analysis (NMA), are often used to efficiently de-

scribe the allowed conformational ensemble of protein

structures (Brooks and Karplus, 1983; Go et al., 1983;

Levitt et al., 1985). The decomposition into modes with dif-

ferent frequencies reduces the dimensionality of the prob-

lem, as a few lowest-frequency modes describe the most

dominant directions of motion (Teodoro et al., 2003).

These global modes have been used to predict protein

flexibility (Cui et al., 2004; Van Wynsberghe et al., 2004)

and to study the mechanism of conformational transitions

necessary for protein function (Ma and Karplus, 1997).

Simple coarse-grained potentials, such as elastic network

models (ENMs), provide an efficient description of a pro-

tein structure by connecting atoms or residues within

a certain distance with identical harmonic potentials

(Tirion, 1996). Despite the extreme simplification, these

models capture the basic topology of a structure and gen-

erate predictions of the flexibility and preferred modes of

motion of proteins that are in general agreement with

experimental data (Bahar and Rader, 2005).

The study of protein conformational dynamics requires

interplay between experiment and computation. A readily

available measure of conformational mobility is the
177, February 2007 ª2007 Elsevier Ltd All rights reserved 169
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Debye-Waller temperature factor, or B factor, which

models the variance in atomic position from the scattering

data. It has been used as a source of information on pro-

tein flexibility for decades (Frauenfelder et al., 1979), and

as computational methodologies have matured, studies

over large numbers of crystal structures have shown

good agreement with computations, specifically with

ENM results (Kundu et al., 2002). While the classic B factor

has long been a routine parameter in protein structure re-

finement, until recently few crystal data sets contained

sufficiently many observations (unique reflections) to allow

determination of anisotropic displacement parameters

(ADPs). These parameters model the probability distri-

bution of atomic positions as a Gaussian function with

ellipsoidal contours, and have been shown to significantly

improve the refinement statistics for crystal structures of

biological macromolecules (Dauter et al., 1997; Esposito

et al., 2000; Longhi et al., 1997) at resolution better than

1.2 Å. ADPs have been used in a few studies as a qualita-

tive indicator of the directionality of prevalent motion in

a protein structure (Wilson and Brunger, 2000), but this

source of experimental information has not been system-

atically exploited.

The proliferation of various simple ENM-like models for

macromolecular fluctuation begs the question of their rel-

ative fidelity and reliability, but no systematic comparison

of the methods has been undertaken, to the best of our

knowledge. Recently, systematic assessments of individ-

ual ENM potentials were published: a validation of a model

based on Ca coordinates (anisotropic network model;

ANM) using B factors from a diverse set of crystal struc-

tures (Eyal et al., 2006), and a study showing that adding

residue-specific parameters into the same model leads

to large improvement in B factor prediction (Hamacher

and McCammon, 2006). Our group has used 98 highest-

resolution crystal structures in the Protein Data Bank

(PDB) for systematic evaluation of prediction of the mag-

nitude of motion in protein structures using an isotropic

ENM model, and demonstrated that using atomic informa-

tion and strengthening the model parameter for covalent

interaction resulted in better prediction quality (Kondra-

shov et al., 2006). In the present work, we compare the

quality of prediction of the magnitude and direction of

structural variance for the most commonly used aniso-

tropic ENM potentials, and we introduce a new one to

better model different chemical interactions. Comparison

between ADPs and computational variance matrices al-

lows a quantitative evaluation of the merits and draw-

backs of different potentials. We also investigate the effect

of the choice of potential on global dynamic properties

such as the correlation matrix.

RESULTS

Analysis of Crystallographic Data

The present study evaluates predictions of five coarse-

grained normal mode potentials using a set of anisotropic

displacement parameters from ultrahigh-resolution

crystal structures. The PDB (Berman et al., 2000) was
170 Structure 15, 169–177, February 2007 ª2007 Elsevier Ltd A
searched for all X-ray crystal structures of proteins with

chain length of at least 50 residues, with resolution at or

beyond 1 Å, with the restriction that the structures have

less than 50% sequence identity. Eighty-three such struc-

tures were deposited with anisotropic displacement pa-

rameters, containing a total of 17,763 protein residues.

Excluding those with disordered Ca atoms or those in-

volved in intermolecular crystal contacts, both of which

have an effect on the ADP, left 12,348 residues with usable

ADPs. The anisotropic displacement parameters are com-

monly represented as ellipsoids in crystal structures, as

shown in Figure 1, and contain information about both

the magnitude and the preferred direction of atomic vari-

ation in the crystal. The anisotropy of the ellipsoid, defined

as the ratio of the smallest to the largest eigenvalue of

ellipsoid matrix (Trueblood et al., 1996), is a measure of

deviation from spherical shape. We separated the struc-

tures by refinement software and found different distribu-

tions of anisotropy for the Ca ADPs. Sixty-eight structures

were refined using SHELX (Sheldrick and Schneider,

1997), and the rest were determined using Refmac from

the CCP4 suite (CCP4, 1994). The Ca ADPs in the Refmac

set had a mean anisotropy of 0.64, compared with 0.51 for

the SHELX set (Figure 2), suggesting that the crystallo-

graphic restraints used in the two programs have signifi-

cant effects on resulting ADPs. As sphere-like ellipsoids

contain little directional information, a subset of ADPs

with anisotropy of less than 0.5 was chosen, leaving

4642 ADPs to compare with the computational predic-

tions of directionality of variance.

Normal Mode Potentials

Elastic network models are dependent on two parame-

ters: the cutoff distance (Tirion, 1996), which separates

Figure 1. Example of a High-Resolution Protein Structure

Showing Anisotropic Temperature Factors for Backbone

Atoms

The ellipsoids represent 90% probability volume of atomic position,

with color varying from immobile (blue) to more mobile (red). Most of

the backbone atoms are not mobile and isotropic, with a few loop res-

idues (residue numbers labeled) showing clear directional preference

in positional distribution. PDB ID code 1R6J.
ll rights reserved
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atom pairs deemed in contact from those which are not in-

teracting, and a force constant for the interaction between

contacting atoms We have shown recently that a stronger

force constant between covalently bound residues re-

sulted in greatly improved variance prediction quality for

an isotropic ENM (Kondrashov et al., 2006), compared

with the single force constant Gaussian network model

(Bahar et al., 1997). In this work, we introduce a new

ENM method, called the distance-based network model

(DNM), with multiple force constants for atomic contacts,

as described in Experimental Procedures. It is clear that

atom pairs closer than 2.3 Å are covalently bound and

thus have stronger interactions than those 5 Å apart. To

mimic the chemistry, several discrete distance ranges

were defined, and force constants were varied to optimize

the agreement with ADPs. We found that similar results

were obtained if the force constants for each category

were set to the reciprocal of the total number of contacts

in this range. Because the number of atomic contacts

grows with distance, this ensures that interactions be-

tween atoms farther away are represented by weaker

force constants than those in close proximity. The atomic

interactions are added up with the appropriate force con-

stants for each residue, producing a residue-level model

based on atomic interactions, with no additional free pa-

rameters, as the force constants are defined based on

the contact matrices. The only parameter not defined

from the structure is the maximum cutoff distance consid-

ered, and we optimized it by comparing prediction quality

in calculations with a range of cutoffs from 5 Å to 11 Å. The

analysis for agreement with magnitudes and directions of

ADP ellipsoids with the model predictions is shown in

Table S1 (in the Supplemental Data available with this ar-

ticle online). With the exception of the 5 Å cutoff the results

were very similar, and 9 Å was selected as the optimal cut-

off distance.

We also tested four existing normal mode potentials,

three of the ENM variety and one based on the CHARMM

force field. The ElNemo method (ElN) (Suhre and

Figure 2. Distributions of Anisotropy Parameters in Struc-

tures Refined with SHELX and Refmac Software

The large difference is likely due to different default restraints on the

anisotropic parameters in the two.
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Sanejouand, 2004) depends on the cutoff distance be-

tween atoms, and the atomic contact matrices are com-

bined into rigid-motion blocks on a residue level. We

varied the cutoff distance from 5 Å to 11 Å (Table S2),

and found the best results at 5 Å, compared with the de-

fault value of 8 Å. The ANM (Atilgan et al., 2001) depends

on a cutoff distance between Ca atoms, and we evaluated

the results for a range from 10 Å to 16 Å (see Table S3). The

variation is also relatively small, but there is an opposite

trend between quality of prediction of direction and mag-

nitude of motion. The best cutoff for directionality predic-

tion was at 10 Å, while the best agreement in magnitude

was with a 16 Å cutoff, in contrast to the previously used

value of 13 Å (Atilgan et al., 2001). Normal modes were

computed using an atomistic force field (CHARMM) with

rigid-body blocks for residues, referred to as block normal

modes (BNM) (Li and Cui, 2002). The inclusion of non-

protein ligands and cofactors in the CHARMM force field

resulted in significant increases in quality of prediction,

and thus all the nonprotein residues for which CHARMM

libraries could be found were added to the models. The

last method used is the harmonic Ca potential (HCA)

with a distance-dependent force constant (Hinsen et al.,

2000), as implemented in the molecular modeling toolkit

(MMTK) (Hinsen, 2000).

Comparison of Crystallographic

and Computational Variance

Anisotropic covariance tensors were computed from 100

lowest-frequency normal modes (excluding the trivial ro-

tation and translation modes; see Experimental Proce-

dures) from 83 structures, and fidelity of both magnitude

and direction prediction was assessed. Magnitude predic-

tion quality was measured by linear correlation between

isotropic ADPs (B factors) and the predicted isotropic var-

iances over each structure. Two different measures were

used for directional agreement, the absolute value of the

dot product between the largest axes of the anisotropic

ADPs (ellipsoids) and the volume overlap fraction, as de-

fined in Experimental Procedures. These two measures

were employed to compare pairs of corresponding resi-

dues, and the reported numbers are the statistics over

all sufficiently anisotropic ellipsoids from all 83 structures.

Table 1 shows that prediction quality was markedly differ-

ent for the magnitude and direction of motion. All the

models had average isotropic correlations of 0.66–0.68,

with the exception of 0.61 for HCA. On the other hand,

there was considerable variation in the directional agree-

ment of ADP ellipsoids. The two measures of directional

agreement, the dot product and the overlap fraction,

largely showed the same trend, with HCA and ANM dis-

playing relatively weak agreement, while ElN, DNM, and

BNM show considerably higher prediction quality, with

CHARMM-based BNM having an edge over the ENM

methods.

The mean absolute value of the dot product is easy to

interpret as a measure of the angle between the preferred

direction and in the experimental and computed ellip-

soids. The average value of 0.65 for BNM corresponds
177, February 2007 ª2007 Elsevier Ltd All rights reserved 171
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to an angle of 48� while the average of 0.56 for ANM cor-

responds to an angle of 56�, but this does not tell the

whole story because it only compares one principal axis

of the ellipsoids. The overlap coefficient is the volume

fraction shared by two ellipsoids of unit volume, and this

quantity varies appreciably from 0.52 for HCA to 0.61 for

BNM. We tested the hypothesis that predictions agree

no better than expected from a random uniform distribu-

tion of ellipsoid direction, for which the mean dot product

is 0.5 and the mean overlap fraction is 0.3 (when anisot-

ropy is fixed at 0.5). Almost all of the structures with a rea-

sonable sample of usable ADPs (with anisotropy < 0.5)

showed better than random agreement in overlap fraction

(p < 0.01) (see Supplemental Data). For the method with

lowest agreement, HCA, 11 structures did not meet this

criterion, and only 4 had more than 10 sufficiently aniso-

tropic ADPs, with the highest at 24. The results for the

best-performing BNM method had only 4 structures

where the null hypothesis could not be rejected, all of

which had only 5 or fewer usable ADPs.

To illustrate the importance of including a large subset

of normal modes for accurate variance prediction, we per-

formed the computations with different numbers of modes

from CHARMM BNM, shown in Table 2. In NMA, the recip-

rocal of the eigenvalue (frequency squared) represents the

contribution of the mode to the total variance, and the first

column shows the cumulative fraction of variance of the

first 100 modes represented by the subset. The first 10

modes account for nearly half of the variance, but the pre-

diction quality for all three measures is considerably lower

than for the full 100 modes, and shows monotonic im-

provement with inclusion of additional modes. The effect

is dramatic for the overlap fraction, largely due to the con-

tribution of higher-frequency modes to ‘‘rounding’’ of the

computed ellipsoids, leading to higher overlap volume

with the relatively isotropic ADPs. However, the dot prod-

uct and the isotropic correlation, which are independent of

anisotropy, show consistent improvement with inclusion

of additional higher-frequency modes, showing that cal-

Table 1. Prediction Quality from 100 Lowest-
Frequency Modes Using Different NMA Potentials

Dota Overlapa Isotropicb

Randomc 0.5 0.3 0

HCA 0.599 (0.199) 0.520 (0.167) 0.617 (0.131)

ANM (16 Å)d 0.556 (0.190) 0.525 (0.172) 0.676 (0.111)

ElN (5 Å)d 0.641 (0.208) 0.583 (0.184) 0.680 (0.128)

DNM (9 Å)d 0.650 (0.209) 0.575 (0.181) 0.655 (0.136)

CHARMM

BNM

0.655 (0.211) 0.608 (0.188) 0.658 (0.128)

a Mean and standard deviation of comparisons with ADPs

from individual Ca atoms.
b Mean and standard deviation for isotropic correlation over

83 entire structures.
c Computed for randomly oriented ADPs with anisotropy 0.5.
d Choice of optimal cutoff parameter is in parentheses.
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culations using only a handful of lowest-frequency modes

are likely imprecise.

Effect of Potential on Global Dynamic Ensembles

Comparison of the normal modes produced by different

methods revealed a clear distinction between the har-

monic ENM models and the CHARMM force field BNM.

We used the modes computed from all 83 structures to

investigate how the dynamic ensemble predictions de-

pend on the use of the potential. The overlap measure de-

scribed in Experimental Procedures was used to compare

the 17 lowest-frequency modes from all five models. Fig-

ure 3 shows the agreement between individual modes for

all ten pairs of potentials, averaged over all 83 structures.

The highest agreement was observed for the lowest-

frequency modes, but the overlap measure dropped be-

low 0.5, depending on the pair of methods, at some point

in the first 15 modes. This demonstrated that the details

of potential play a secondary role at lowest-frequency

modes, which are dominated by contact topology and

shape of the molecular structure. A second observation

is the distinctiveness of modes derived from CHARMM-

based BNM, which showed much lower overlap with

ENM-based methods (dotted lines) than overlap among

modes from ENM-type potentials (solid lines), with the

single exception of the overlap between ANM and ElN.

Because the latter is an all-atom potential, it is reasonable

that it should be closer to chemistry-based BNM than

to Ca-based ANM. We tested the possibility that minimi-

zation of structures prior to BNM is responsible for the dif-

ference in BNM modes by calculating DNM modes from

the minimized structures. The resulting average overlap

with BNM was 0.76 as opposed to 0.75 for BNM with

DNM from unminimized structures, still much lower than

DNM agreement with other methods. This suggests that

the chemical information present in the all-atom CHARMM

potential plays a role in determining the lowest-frequency

modes, in addition to the topology of the structure.

Table 2. Prediction Quality of CHARMM BNM from
Different Numbers of Lowest-Frequency Modes

Variance
Fractiona

Dot
Productb

Overlap
Fractionb

Isotropic
Correlationc

3 modes 0.272 0.632 0.153 0.531

5 modes 0.348 0.634 0.305 0.557

10 modes 0.473 0.640 0.451 0.600

20 modes 0.623 0.643 0.536 0.622

30 modes 0.720 0.645 0.563 0.632

40 modes 0.791 0.646 0.578 0.640

50 modes 0.847 0.648 0.589 0.645

60 modes 0.894 0.650 0.594 0.650

a Variation is represented by the indicated subset of modes as

a fraction of the variance from 100 lowest-frequency modes,
excluding rigid-body modes.
b Mean comparisons with ADPs from individual Ca atoms.
c Mean isotropic correlation over 83 entire structures.
rights reserved
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To illustrate the differences between the chemical force

field and ENM, we chose a small, well-studied structure

from the data set, a PDZ2 domain from syntenin (PDB ID

code 1R6J), and computed the correlation matrices (see

Experimental Procedures) from the 90 low-frequency

modes of ANM and BNM. Figure 4 shows correlation ma-

trices computed from ANM and BNM modes. In general

they look quite similar, with major features determined

by the secondary-structure elements: antiparallel b sheets

appear as positive bands perpendicular to the diagonal,

and the two helices result in a thickening of the diagonal

band. While the pattern of secondary structures is clear

in both potentials, there are evident differences. First,

Figure 3. Overlap Scores for Individual Normal Modes from

Different Potentials Averaged over All 83 Structures

Each curve is a comparison between a pair of potentials for the 17

lowest-frequency modes. The solid curves compare different ENM-

like potentials, while the dotted curves compare CHARMM-based

BNM results with those from ENM potentials.
Structure 15, 169
the magnitude of correlation is at least two times weaker

in ANM (see the color bar), and the secondary-structure

features are not as clear, due to the inclusion of residues

as far as 16 Å away. Second, due to identical force con-

stants for distant and proximal interactions, the diagonal

band is considerably weaker in the ANM plot than in

BNM, which has a more realistic representation of cova-

lent bonds and other main-chain interactions. Both poten-

tials capture the effect of gross topology, but the effects of

specific chemistry are hidden in the fine details of the BNM

correlation matrix.

DISCUSSION

We analyzed five different coarse-grained potentials used

to model the conformational flexibility of protein struc-

tures. These were evaluated both by validation against ex-

perimental data and by comparison among the different

potentials. To our knowledge, this is the first systematic

attempt to use anisotropic displacement parameters to

validate computational predictions, and it behooves us

to note the challenges arising from using this data source.

The reliability of ADPs has been tested before (Merritt,

1999), with good agreement in ellipsoid shape observed

between independently determined structures of the

same protein; we found the same to be true for structures

of myoglobin in four different crystal forms (D.A.K., W.

Zhang, R. Aranda IV, B. Stec, and G.N.P., unpublished

data). This shows that ADPs are robust experimental pa-

rameters, and to minimize the noise contributions we

used the highest-resolution crystal structures available.

However, quantitative comparison between ADPs and

computational predictions is not straightforward, due

to contributions of experimental noise, model error (Kur-

iyan et al., 1986), rigid-body motion of the entire molecule

(Kuriyan and Weis, 1991), and specifics of crystal
Figure 4. Correlation Matrices Generated from Normal Mode Analyses of a PDZ Domain

The plots show correlation between residues with indices shown on x and y axes, blue color indicating negative correlation and red signifying positive,

with the range shown in the color bars. Secondary-structure elements are labeled in sequence order. PDB ID code 1R6J.

(A) Correlation from anisotropic network model.

(B) Correlation from CHARMM-based block normal modes. Note that the range in (A) is half that of (B).
–177, February 2007 ª2007 Elsevier Ltd All rights reserved 173
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environment, such as crystal contacts between copies of

the protein packed in the lattice (Phillips, 1990) and collec-

tive lattice modes (Clarage et al., 1992). Further, the ADP

represents the best fit of a Gaussian distribution to the

electron density of an atom, but anharmonic and multi-

modal positional distributions are expected for protein

atoms, especially in mobile regions, such as the surface.

Only atoms with pronounced anisotropy are used for di-

rectional comparison, which tend to lie in mobile regions

with poorer electron density (see Figure 1) and which are

not adequately modeled with a single conformer (DePristo

et al., 2004). Thus, it is likely that many atoms in our direc-

tional data set are not adequately modeled by the Gauss-

ian ADP model. Despite these caveats, our results show

good agreement between the predicted and computed

ADPs: for virtually all structures, the overlap fraction be-

tween BNM predictions and ADPs is significantly higher

than the expectation from a uniform random variable.

This suggests that the influence of the factors listed above

is not sufficient to overwhelm the important contribution of

intramolecular conformational flexibility. This is consistent

with a recent comparison of molecular dynamics simula-

tions with crystallographic B factors which estimated

that rigid-body motions contribute only 20%–30% of total

positional variance in B factors (Meinhold and Smith,

2005). The agreement between computation and experi-

ment serves to validate both the interpretation of the

experimental data and the reliability of computational

predictions.

In our analysis, we combined multiple low-frequency

normal modes to generate the anisotropic variance for

each residue from a large number of modes, weighted

by the calculated frequencies, and compared the result

with the crystallographic variation. This method has

been used in previous work applying normal modes to

crystallographic refinement (Kidera and Go, 1990), but is

not in common use for validating normal modes with ex-

perimental displacements. Instead, the procedure is often

used to project low-frequency modes individually onto

a conformational change, and to obtain a cumulative pro-

jection coefficient. This, however, is impossible to do with-

out prior knowledge of the conformational change in the

structure, and gives only an agreement between the sub-

space spanned by several modes and the conformational

change. Our approach does not presume any knowledge

beyond the initial structure, and measures agreement with

the entire normal mode ensemble, rather than with individ-

ual modes.

This is also, as far as we know, the first large-scale com-

parative study of coarse-grained normal mode methods.

Comparison of the modes from different potentials reveals

a distinct split between the ENM methods and BNM, as

seen in Figure 3. This suggests that the chemical informa-

tion absent in the ENM potential is observable in the BNM

results, although there is significant similarity at low-

frequency modes due to the shape of the structure

reflected in both potential types. The observation opens

up a possibility of separating the effect of gross protein

structure from that of detailed residue chemistry as re-
174 Structure 15, 169–177, February 2007 ª2007 Elsevier Ltd A
flected by the CHARMM force field. A careful comparison

of ENM predictions with those from normal modes with

chemical force field could potentially be used to determine

residues whose chemistry plays a key role in the dynamic

coupling in the structure, and which would therefore be

especially sensitive to mutation. The visual comparison

of the correlation patterns from ANM and BNM demon-

strates that the chemical effects are subtle in comparison

to the topological features captured by both BNM and

ANM, and all the other methods.

The choice of computational strategy to address a given

problem involves balancing computational efficiency

against model detail. Fast calculations are meaningless

if they give unreliable results, and extremely accurate cal-

culations are of no use if they cannot be completed in

a reasonable time frame. Normal mode analysis is based

on a choice to limit the model to the neighborhood of the

potential minimum. Further simplification of using an elas-

tic network model potential instead of a physical, all-atom

potential is another concession toward efficient calcula-

tion and away from physical reality. We found that predic-

tion quality of the magnitude of flexibility is similar for

CHARMM BNM and all ENM models, with the exception

of HCA. This is consistent with a recent comparison of dif-

ferent levels of ENM potentials which found that addition

of all-atom coordinates resulted in only small improve-

ments in B factor agreement (Sen et al., 2006). The results

once again demonstrate the robustness of the elastic net-

work models, and suggest that the main factor in deter-

mining macromolecular flexibility is the number of local

contacts, determined by the shape of the molecule (Halle,

2002). In prediction of directionality of motion, there is

a clear difference between methods that are based only

on Ca coordinates (HCA and ANM) and those that con-

sider all atoms. CHARMM-based BNM has the best direc-

tional agreement as measured by the overlap fraction,

while our new method, DNM, and ElN come close to

matching this standard. This suggests that an all-atom

ENM potential can give an accurate representation of

the conformational ensemble of a protein near the native

state, but the inclusion of chemical forces improves the

model.

We must also consider the cost, both computational

and human, required by the different methods. One of

the main differences between ENM techniques and BNM

is that the latter requires an initial minimization step (see

Experimental Procedures). If minimization is not complete,

subsequent diagonalization will lead to spurious modes

with large, negative frequencies; one must be careful to

only pick productive modes when using results from

BNM, whereas elastic network models are at a local min-

imum by construction. Further, the initial setup with an all-

atom potential requires attention to the individual oddities

of each structure: disulfide bonds, nonstandard residues,

bound ligands, or cofactors. Each of these issues must be

dealt with individually, thus making automation of the cal-

culations more difficult. Compared with ENM models, in

which most of these details are ignored, CHARMM-based

normal modes require a great deal of human effort.
ll rights reserved
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The present results indicate that anisotropic tempera-

ture factors from high-resolution crystal structures contain

a measure of internal molecular flexibility, and can be used

as a source of dynamic information and as a test for

computational methodologies. Comparison of different

methods indicates that elastic network models can de-

scribe the conformational ensemble of protein structures

with accuracy approaching that of CHARMM, but that

there is a substantial spread in prediction quality of dif-

ferent ENM potentials. Using an exclusively Ca-based

potential results in a large sacrifice in prediction quality

of directionality, but the lowest-frequency modes are ro-

bust across the methods. The information may help those

studying interactions within biological molecules choose

the appropriate level of complexity for the system of inter-

est and for the level of detail required of the prediction.

EXPERIMENTAL PROCEDURES

We use normal mode analysis (Brooks and Karplus, 1983; Go et al.,

1983; Levitt et al., 1985) to predict the positional ensemble of protein

structures. The different models use distinct potentials, all of which

require the knowledge of protein structure. The Hessian matrix of the

potential is diagonalized to find the normal modes, or eigenvectors ui

and the corresponding frequencies ui: Hui = u2
i ui. The decomposition

allows us to compute the covariance matrix, which is proportional to

the pseudoinverse of the Hessian. Let di be the deviation from the

mean for component i; then the covariance between two deviations is

�
didj

�
=

1

2kBT

X
k

1

u2
k

uikujk ;

where brackets denote mean value, and ui is the ith component of the

kth normal mode with frequency uk. Note that the modes with the low-

est frequencies make the greatest contribution to residue mobility, so

a small fraction of all the modes is sufficient to obtain a good approx-

imation of the sum. This allows us to compute anisotropic variances as

3 3 3 blocks around the diagonal of the covariance matrix (Kidera and

Go, 1990).

We may also compute the correlation coefficient between the devi-

ations of any two atoms, to generate the global correlation matrix

Rðdi ; djÞ=
�
didj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d2

i

�D
d2

j

Er :

Elastic Network Models

Anisotropic network model (ANM) (Atilgan et al., 2001) is a version of

elastic network model (ENM), based on connecting residues with Ca

atoms within a cutoff distance Rc with spring-like interactions. The

Hessian matrix is a 3N 3 3N matrix, where N is the number of residues,

consisting of 3 3 3 submatrices Hij which depend on the direction of

the vector between Ca atoms i and j, and are 0 if the Ca atoms are

more than Rc apart. The diagonal submatrices are defined as follows:

Hii = �
P

jHij . This defines a coarse-grained elastic network model of

a protein structure with directional information. We implemented this

algorithm using perl code to read PDB files and construct the Hessian,

with MATLAB (The Mathworks, Natick, MA) scripts used for diagonal-

ization.

We introduce two modifications to ANM, analogous to those we had

previously proposed for isotropic models (Kondrashov et al., 2006),

and term the new model distance network model (DNM). First, the

connectivity of the elastic potential is based on distances between

nonhydrogen atoms of residue pairs, instead of only the Ca atoms.

The contacts from all atoms are added for each residue to yield an
Structure 15, 169–
interaction potential at the residue level. Second, we introduce differ-

ent classes of residue interactions based on interatomic distances,

with distinct Hookean spring constants. We use distance bins to define

the interaction classes, specifically, covalent interactions are found by

distance less than 2.3 Å, the next shell is up to 3.3 Å, followed by 5, 7, 9,

and 11 Å. The Hessian matrix for each bin is defined exactly as for ANM

above, with the difference that the equilibrium distance between two

atoms has to be in the distance bin, while the coordinates ðxi ; yi ; ziÞ
for residue i remain the Ca coordinates. If Ha is the contact matrix for

class a, the total Hessian matrix for DNM is a linear combination of

the matrices, with ka as the interaction constant for each class:

Htotal =
X

a

kaHa =
X

a

1

trðHaÞ
Ha:

The constants ka define the strength of interactions, and we chose to

use the total number of contacts in each class as a normalization con-

stant, ka = 1=½trðHaÞ�. Thus, although DNM introduces several different

interaction constants, these are defined from the contact matrices,

and thus are not free parameters to be optimized. The only free param-

eter, as in other ENMs, is the cutoff distance for atomic contacts, which

we vary from 5 Å to 11 Å, as described in Results. The implementation

again used a combination of perl and MATLAB scripts.

The details of the normal mode analysis implementation of the

molecular modeling toolkit (MMTK) have been described elsewhere

(Hinsen, 2000). For this study, we used the harmonic Ca force field

(HCA) (Hinsen et al., 2000), which defines different interaction con-

stants for covalently bonded and noncovalently bonded Ca atoms.

The model uses the reciprocal of distance to weight the harmonic in-

teraction constants, and no parameters are varied from the default

values. The MMTK calculations for all 83 structures in the data set

are carried out in 2 hr on a single 2 GHz AMD Athlon processor with

2 GB of RAM.

ElNemo (ElN) (Suhre and Sanejouand, 2004) is an all-atom ENM,

which constructs a contact matrix for all atoms within a certain radius

and then treats blocks of one or more residues as rigid bodies using the

rotation-translation blocking algorithm (Tama et al., 2000). The two

main programs that constitute ElNemo, pdbmat and diagrtb, were

kindly provided by the authors and installed on the local cluster. All

blocking was done on a residue-by-residue basis and the interaction

cutoff distance was varied from 4 Å to 11 Å. Running ElN on all 83

structures in the data set using eight different cutoff distances took

roughly 1 day to complete on a 100 node cluster of 2.2 GHz Apple

G5 processors with 4 GB of RAM.

Block Normal Modes with CHARMM

Block normal mode analysis (BNM), originally suggested by Tama et al.

(2000) and subsequently improved by Li and Cui (2002), computes an

all-atom Hessian which is then projected onto a blocked space

spanned by the rotational and vibrational degrees of freedom of prede-

fined blocks; in this work each residue is treated as a rotation-transla-

tion block, as in the ElNemo method above. For this level of coarse

graining, the procedure reduces the Hessian storage space by approx-

imately a factor of 25 and the diagonalization time by a factor of 125.

The resulting blocked eigenvectors were then projected back to the

all-atom space to give all-atom eigenvectors. This procedure perturbs

the magnitudes of the eigenvalues, but in a linear fashion for the low-

frequency modes (Li and Cui, 2002; Tama et al., 2000). The appropriate

scale factor of 1.7 has been used in this work. Local minimization is

performed to ensure that the linear term in the Taylor expansion of the

potential is zero (Hayward, 2001). This minimization is completed using

cycles of the adapted-basis Newton-Raphson method with gradually

decreasing harmonic constraints to remove local steric clashes with-

out perturbing the structure significantly. A final minimization with

no harmonic constraints is performed until the root-mean-squared en-

ergy gradient reaches 0.01 kcal/mol/Å. The average minimization time

for this set is approximately 8 min, but minimization times vary widely

because of protein size: 54 s for the 52 residue PDB ID code 1RB9, and
177, February 2007 ª2007 Elsevier Ltd All rights reserved 175
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73 min for the 325 residue PDB ID code 1O7J, all computed on a 1.8

GHz Athlon single-processor station with 1 GB of memory, running

Red Hat Linux 7.2. In some of the systems studied, this level of minimi-

zation resulted in modes with large negative frequencies in addition to

the normal six rotational-translational modes. In these cases, these

modes were ignored for all subsequent calculations. The average diag-

onalization time for BNM was approximately 6 min, varying widely

again: 48 s for PDB ID code 1RB9, and 51 min for PDB ID code

1O7J. All calculations are completed using the CHARMM suite of pro-

grams (Brooks et al., 1983; Neria et al., 1996). The extended atom

CHARMM19 force field (Neria et al., 1996), modified for use with the

EEF1 solvation model (Lazaridis and Karplus, 1999), is used for both

minimizations and the BNM.

Measures of Agreement with Crystallographic Data

The data set was obtained by searching the PDB (Berman et al., 2000)

for protein structures determined by X-ray crystallography to at least

1.0 Å resolution and containing at least 50 residues in a single chain.

Structures with more than 50% identity were discarded, leaving 98

nonredundant proteins, of which 87 contained ANISOU cards (aniso-

tropic displacement parameters); 4 more structures were discarded

because they contained modified protein residues for which CHARMM

libraries are not available. The resultant set is structurally diverse, with

all major SCOP superfamilies (Murzin et al., 1995) represented, as

shown in Table S1. All protein chains in the PDB files were kept in

the model in order to best represent the crystal environment. Copies

of the protein molecule surrounding the structure in the crystal are gen-

erated using the symexp command in PyMOL (DeLano, 2002). Resi-

dues with at least one atom less than 4 Å from an atom in a crystal

copy were considered to be involved in crystal contacts, and were ex-

cluded from the comparison set. Further, ADPs from Ca atoms with

multiple conformations determined by an occupancy parameter with

a value other than 1 were also excluded.

The anisotropic parameters are 3 3 3 matrices that define the vari-

ance of a three-dimensional Gaussian probability distribution for the

position of each atom:

rðxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
U�1

�
8p3

s
exp

2
4xt

0
@Uxx Uxy Uxz

Uxy Uyy Uyz

Uxz Uyz Uzz

1
Ax

3
5:

The six components of ADPs, Uxx and so on, are reported in the PDB

files in ANISOU cards (Berman et al., 2000). We compare the compu-

tationally predicted anisotropic parameters V with those from the crys-

tal structures U. Prediction quality of the magnitude of variation is mea-

sured by linear correlation of the traces of the matrices U and V over the

whole structure, which we call isotropic correlation. To compare direc-

tions of ellipsoids, we first divide all the matrices by their trace, to set all

magnitudes to unity. Ellipsoids are described by their principal axes

(eigenvectors) and the associated lengths (inverse eigenvalues); the

ratio of the smallest to the largest eigenvalue is called its anisotropy

(Trueblood et al., 1996). Directionality comparison was restricted to el-

lipsoids with anisotropy of less than 0.5, as directional comparison of

near-spherical ellipsoids is meaningless. The simplest comparison of

directionality is the absolute value of the dot product between the ma-

jor directions. It is a rough estimate of agreement for two ellipsoids

whose major axes are dominant, but has the virtue of simplicity. A

more systematic measure of ellipsoid similarity was proposed by Mer-

ritt (1999), based on computation of the overlap integral between two

probability densities. This measure, known to crystallographers as the

real-space correlation coefficient, is defined for two three-dimensional

Gaussian distributions with covariance matrices U and V as follows:

ccðU;VÞ=
�
detðU�1ÞdetðV�1Þ

�1=4
�
1=8 detðU�1 + V�1Þ

�1=2:
We also compare modes produced by the different normal mode

potentials. To compare mode i (as ordered by frequency) from two
176 Structure 15, 169–177, February 2007 ª2007 Elsevier Ltd All
methods, we take the average between the best agreement for

mode i from method a with modes from method b, and the best agree-

ment for mode i from method b with the modes from method a. We

compare the modes similar in frequency ordering, specifically, only

the modes no more than three indices higher or lower. The formula

for overlap for mode i between methods a and b is

Oa;bðiÞ=
1

2
max

i�3%j%i + 3
ua

i � ub
j +

1

2
max

i�3%j%i + 3
ub

i � ua
j :

If the best agreement is between modes of the same index, then the

two maxima are the same. Figures 2–4 were prepared using MATLAB

(The Mathworks) and Figure 1 with Rastep and Raster3D (Merritt and

Bacon, 1997).

Supplemental Data

Supplemental Data include eight tables and can be found with this ar-

ticle online at http://www.structure.org/cgi/content/full/15/2/169/

DC1/.
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