6 research outputs found

    Estimation of the EMI Filter Circuitry from the Insertion Loss Characteristics

    Get PDF
    The paper deals with the EMI filter models for the calculation of the insertion loss characteristics. The insertion loss is in fact the basic EMI filter property. Unfortunately it is not easy to precisely define and measure this parameter in a wide frequency range due to variability of terminating impedances. The uncertainty of the potential impedance termination really complicates the measurements and also comparison of the performance of filters. A model with spurious components is introduced in this paper. The procedure model design is also added up. The spurious components make together with the real ones form resonant circuits. The resonance frequencies make breakages in the insertion loss characteristic. Their resonance frequencies were identified by the analysis of equivalent circuits of the filter for different measuring systems. The calculation of the values of spurious components, based on knowledge of resonance frequencies, is mentioned at the end of the paper

    Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein

    Get PDF
    Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2ÂŽ site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice expressing human ACE2 against infection when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants

    Kyasanur Forest disease virus infection activates human vascular endothelial cells and monocyte-derived dendritic cells

    No full text
    Abstract Kyasanur Forest disease virus (KFDV) is a highly pathogenic tick-borne flavivirus enzootic to India. In humans, KFDV causes a severe febrile disease. In some infected individuals, hemorrhagic manifestations, such as bleeding from the nose and gums and gastrointestinal bleeding with hematemesis and/or blood in the stool, have been reported. However, the mechanisms underlying these hemorrhagic complications remain unknown, and there is no information about the specific target cells for KFDV. We investigated the interaction of KFDV with vascular endothelial cells (ECs) and monocyte-derived dendritic cells (moDCs), which are key targets for several other hemorrhagic viruses. Here, we report that ECs are permissive to KFDV infection, which leads to their activation, as demonstrated by the upregulation of E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 at the mRNA and protein levels. Increased expression of these adhesive molecules correlated with increased leukocyte adhesion. Infected ECs upregulated the expression of interleukin (IL)-6 but not IL-8. Additionally, moDCs were permissive to KFDV infection, leading to increased release of IL-6 and tumor necrosis factor-α. Supernatants from KFDV-infected moDCs caused EC activation, as measured by leukocyte adhesion. The results indicate that ECs and moDCs can be targets for KFDV and that both direct and indirect mechanisms can contribute to EC activation

    Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors

    No full text
    UMR BIPAR is supported by the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant No. ANR-10-LABEX-62-IBEID).International audienceUp to 170 tick-borne viruses (TBVs) have been identified to date. However, there is a paucity of information regarding TBVs and their interaction with respective vectors, limiting the development of new effective and urgently needed control methods. To overcome this gap of knowledge, it is essential to reproduce transmission cycles under controlled laboratory conditions. In this study we assessed an artificial feeding system (AFS) and an immersion technique (IT) to infect Ixodes ricinus ticks with tick-borne encephalitis (TBE) and Kemerovo (KEM) virus, both known to be transmitted predominantly by ixodid ticks. Both methods permitted TBEV acquisition by ticks and we further confirmed virus trans-stadial transmission and onward transmission to a vertebrate host. However, only artificial feeding system allowed to demonstrate both acquisition by ticks and trans-stadial transmission for KEMV. Yet we did not observe transmission of KEMV to mice (IFNAR −/− or BALB/c). Artificial infection methods of ticks are important tools to study tick-virus interactions. When optimally used under laboratory settings, they provide important insights into tick-borne virus transmission cycles

    Mannitol treatment is not effective in therapy of rabies virus infection in mice

    No full text
    Rabies is a deadly viral disease with an extremely high fatality rate in humans. Previously, it was suggested that an enhancement of the blood-brain barrier (BBB) permeability, which allows immune cells and/or antibodies to enter the central nervous system (CNS) tissue, is critical to clear the infection. In this study, we utilised mannitol to increase BBB permeability in mice infected with highly pathogenic silver-haired bat rabies virus (SHBRV). We found that intraperitoneal injection of mannitol causes a slight, transient increase of BBB permeability in the treated mice. SHBRV-infected mice were treated with intraperitoneally administered mannitol daily from day 3 or day 4 post-infection, but no effect of this treatment on the time of disease onset, clinical signs or survival was observed. This data indicates that the increase of BBB permeability by mannitol is not efficient in promoting CNS virus clearance in SHBRV-infected mice.status: publishe
    corecore