55 research outputs found

    Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer

    Get PDF
    Metabolomic profiling offers a powerful methodology for understanding the perturbations of biochemical systems occurring during a disease process. During neoplastic transformation, prostate cells undergo metabolic reprogramming to satisfy the demands of growth and proliferation. An early event in prostate cell transformation is the loss of capacity to accumulate zinc. This change is associated with a higher energy efficiency and increased lipid biosynthesis for cellular proliferation, membrane formation and cell signaling. Moreover, recent studies have shown that sarcosine, an N-methyl derivative of glycine, was significantly increased during disease progression from normal to localized to metastatic prostate cancer. Mapping the metabolomic profiles to their respective biochemical pathways showed an upregulation of androgen-induced protein synthesis, an increased amino acid metabolism and a perturbation of nitrogen breakdown pathways, along with high total choline-containing compounds and phosphocholine levels. In this review, the role of emerging biomarkers is summarized, based on the current understanding of the prostate cancer metabolome

    Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.

    Get PDF
    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target

    Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides

    Get PDF
    Endothelial dysfunction is a hallmark of LPS-induced acute kidney injury (AKI). Endothelial cells (ECs) acquired a fibroblast-like phenotype and contributed to myofibroblast generation through the endothelial-to-mesenchymal transition (EndMT) process. Of note, human adult renal stem/progenitor cells (ARPCs) enhance the tubular regenerative mechanism during AKI but little is known about their effects on ECs. Following LPS exposure, ECs proliferated, decreased EC markers CD31 and vascular endothelial cadherin, and up-regulated myofibroblast markers, collagen I, and vimentin. The coculture with ARPCs normalized the EC proliferation rate and abrogated the LPS-induced EndMT. The gene expression analysis showed that most of the genes modulated in LPS-stimulated ARPCs belong to cell activation and defense response pathways. We showed that the ARPC-specific antifibrotic effect is exerted by the secretion of CXCL6, SAA4, and BPIFA2 produced after the anaphylatoxin stimulation. Next, we investigated the molecular signaling that underlies the ARPC protective mechanism and found that renal progenitors diverge from differentiated tubular cells and ECs in myeloid differentiation primary response 88-independent pathway activation. Finally, in a swine model of LPS-induced AKI, we observed that activated ARPCs secreted CXCL6, SAA4, and BPIFA2 as a defense response. These data open new perspectives on the treatment of both sepsis- and endotoxemia-induced AKI, suggesting an underestimated role of ARPCs in preventing endothelial dysfunction and novel strategies to protect the endothelial compartment and promote kidney repair.-Sallustio, F., Stasi, A., Curci, C., Divella, C., Picerno, A., Franzin, R., De Palma, G., Rutigliano, M., Lucarelli, G., Battaglia, M., Staffieri, F., Crovace, A., Pertosa, G. B., Castellano, G., Gallone, A., Gesualdo, L. Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides

    Metabolomic Approaches for Detection and Identification of Biomarkers and Altered Pathways in Bladder Cancer

    Get PDF
    Metabolomic analysis has proven to be a useful tool in biomarker discovery and the molecular classification of cancers. In order to find new biomarkers, and to better understand its pathological behavior, bladder cancer also has been studied using a metabolomics approach. In this article, we review the literature on metabolomic studies of bladder cancer, focusing on the different available samples (urine, blood, tissue samples) used to perform the studies and their relative findings. Moreover, the multi-omic approach in bladder cancer research has found novel insights into its metabolic behavior, providing excellent start-points for new diagnostic and therapeutic strategies. Metabolomics data analysis can lead to the discovery of a “signature pathway” associated with the progression of bladder cancer; this aspect could be potentially valuable in predictions of clinical outcomes and the introduction of new treatments. However, further studies are needed to give stronger evidence and to make these tools feasible for use in clinical practice

    Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets

    Get PDF
    : Clear cell renal cell carcinoma (ccRCC) is the most frequent histological kidney cancer subtype. Over the last decade, significant progress has been made in identifying the genetic and metabolic alterations driving ccRCC development. In particular, an integrated approach using transcriptomics, metabolomics, and lipidomics has led to a better understanding of ccRCC as a metabolic disease. The metabolic profiling of this cancer could help define and predict its behavior in terms of aggressiveness, prognosis, and therapeutic responsiveness, and would be an innovative strategy for choosing the optimal therapy for a specific patient. This review article describes the current state-of-the-art in research on ccRCC metabolic pathways and potential therapeutic applications. In addition, the clinical implication of pharmacometabolomic intervention is analyzed, which represents a new field for novel stage-related and patient-tailored strategies according to the specific susceptibility to new classes of drugs

    Novel Insights into Autophagy and Prostate Cancer: A Comprehensive Review

    Get PDF
    Autophagy is a complex process involved in several cell activities, including tissue growth, differentiation, metabolic modulation, and cancer development. In prostate cancer, autophagy has a pivotal role in the regulation of apoptosis and disease progression. Several molecular pathways are involved, including PI3K/AKT/mTOR. However, depending on the cellular context, autophagy may play either a detrimental or a protective role in prostate cancer. For this purpose, current evidence has investigated how autophagy interacts within these complex interactions. In this article, we discuss novel findings about autophagic machinery in order to better understand the therapeutic response and the chemotherapy resistance of prostate cancer. Autophagic-modulation drugs have been employed in clinical trials to regulate autophagy, aiming to improve the response to chemotherapy or to anti-cancer treatments. Furthermore, the genetic signature of autophagy has been found to have a potential means to stratify prostate cancer aggressiveness. Unfortunately, stronger evidence is needed to better understand this field, and the application of these findings in clinical practice still remains poorly feasible

    Diabetic ketoacidosis at the onset of disease during a national awareness campaign: a 2-year observational study in children aged 0-18 years

    Get PDF
    After a previous survey on the incidence of diabetic ketoacidosis (DKA) at onset of type 1 diabetes in children in 2013-2014 in Italy, we aimed to verify a possible decline in the incidence of DKA at onset during a national prevention campaign

    The Silent Epidemic of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents in Italy During the COVID-19 Pandemic in 2020

    Get PDF
    To compare the frequency of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes in Italy during the COVID-19 pandemic in 2020 with the frequency of DKA during 2017-2019

    Isolation and characterization of cancer stem cells in renal cell carcinoma.

    No full text
    Recently, several studies have investigated the presence of cancer stem cells in kidney cancer, performed characterization, and compared their profile with the normal stem cell counterparts. CD133, alone or in combination with other molecular markers, has been used to isolate normal and cancer stem cells from different sources, including renal carcinoma; however, it is still a matter of debate whether CD133+ cells really represent the main tumorigenic population within the heterogeneous pool of cancer cells that characterize this tumor. In this review, we summarize and discuss the current findings related to cancer stem cells isolation in renal cell carcinoma, focusing on controversies about their origin and the identification of a specific marker
    corecore