181 research outputs found

    \u3ci\u3eCorrigendum\u3c/i\u3e (Russo et al. 2007): A Re-Analysis of Growth–Size Scaling Relationships of Woody Plant Species

    Get PDF
    Russo et al. (2007) tested two predictions of the Metabolic Ecology Model (Enquist et al. 1999, 2000) using a data set of 56 tree species in New Zealand: (i) the rate of growth in tree diameter (dD/dt) should be related to tree diameter (D) as dD/dt = βDα and (ii) tree height (H) should scale with tree diameter as H(D) = γDδ, where t is time, β and γ are scaling coefficients that may vary between species, and α and δ are invariant scaling exponents predicted to equal 1/3 and 2/3, respectively (Enquist et al. 1999, 2000). To this end, Russo et al. (2007) used maximum likelihood methods to estimate α and δ and their two-unit likelihood support intervals. As noted in our original manuscript, the growth–diameter scaling exponent and coefficient covary, complicating the estimation of confidence intervals. We now recognize that the method we used to estimate support intervals (using marginal support intervals with the nuisance parameters fixed) underestimates the breadth of the interval and that the support intervals, properly estimated, should account for the variability in all parameters (Hilborn & Mangel 1997). This can be done in several ways. For example, the Hessian matrix can be used to estimate the standard deviation for each parameter, assuming asymptotic normality. Alternatively, one can systematically vary the parameter for which the interval is being estimated, re-estimate the Maximum likelihood estimates (MLEs) for the other parameters, and take the support interval to be the values of the target parameter that result in log likelihoods that are two units away from the maximum (Edwards 1992; Hilborn & Mangel 1997). A third and more direct approach to comparing data with prediction is to use the likelihood ratio test (LRT), which explicitly tests if a model with a greater number of parameters provides a significantly better fit to the data than a simpler model in which some parameters are fixed at predicted values (Hilborn & Mangel 1997; Bolker in press). Here, we re-analyze our data using LRTs, present a table revising Tables 1 and 2 from Russo et al. (2007), and reevaluate whether there is statistical support for the predictions of the Metabolic Ecology Model that we tested in Russo et al. (2007). We used LRTs to test, respectively, whether a model in which a,or d, was estimated at its MLE had a significantly greater likelihood than did a model with α = 1/3, or δ = 2/3, for the growth–diameter and height–diameter scaling relationships

    Interactions with soil fungi alter density dependence and neighborhood effects in a locally abundant dipterocarp species

    Get PDF
    Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators. Intrinsic correlation between proximity to adult conspecifics (i.e., recruitment neighborhood) and local seedling density, arising from dispersal, makes it difficult to separate the independent and interactive factors that contribute to recruitment success. Here, we present a field experiment in which we manipulated both the recruitment neighborhood and seedling density to explore how they interact to influence the growth and survival of Dryobalanops aromatica, a dominant ectomycorrhizal tree species in a Bornean tropical rainforest. First, we found that both local seedling density and recruitment neighborhood had effects on performance of D. aromaticaseedlings, though the nature of these impacts varied between growth and survival. Second, we did not find strong evidence that the effect of density on seedling survival is dependent on the presence of conspecific adult trees. However, accumulation of mutualistic fungi beneath conspecifics adults does facilitate establishment of D. aromatica seedlings. In total, our results suggest that recruitment near adult conspecifics was not associated with a performance cost and may have weakly benefitted recruiting seedlings. Positive effects of conspecifics may be a factor facilitating the regional hyperabundance of this species. Synthesis: Our results provide support for the idea that dominant species in diverse forests may escape the localized recruitment suppression that limits abundance in rarer species

    Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world

    Get PDF
    Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism’s physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism’s state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change

    Nitrogen uptake strategies of edaphically specialized Bornean tree species

    Get PDF
    The association of tree species with particular soil types contributes to high b diversity in forests, but the mechanisms producing such distributions are still debated. Soil nitrogen (N) often limits growth and occurs in differentially available chemical forms. In a Bornean forest where tree species composition changes dramatically along a soil gradient varying in supplies of different N-forms, we investigated whether tree species’ N-uptake and soil specialization strategies covaried. We analyzed foliar 15N natural abundance for a total of 216 tree species on clay or sandy loam (the soils at the gradient’s extremes) and conducted a 15N-tracer experiment with nine specialist and generalist species to test whether species displayed flexible or differential uptake of ammonium and nitrate. Despite variation in ammonium and nitrate supplies and nearly 4 % difference in foliar δ15N between most soil specialists and populations of generalists on these soils, our 15N tracer experiment showed little support for the hypothesis that soil specialists vary in N-form use or the ratios in which they use these forms. Instead, our results indicate that these species possess flexible capacities to take up different inorganic N forms. Variation between soil specialists in uptake of different N forms is thus unlikely to cause the soil associations of tree species and high b diversity characteristic of this Bornean rain forest. Flexible uptake strategies would facilitate N-acquisition when supply rates of N-forms exhibit spatiotemporal variation and suggest that these species may be functionally redundant in their responses to N gradients and influences on ecosystem N-cycles

    Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon

    Get PDF
    Background: Many tree species in tropical forests have distributions tracking local ridge-slope-valley topography. Previous work in a 50-ha plot in Korup National Park, Cameroon, demonstrated that 272 species, or 63% of those tested, were significantly associated with topography. Methods: We used two censuses of 329,000 trees ≥1 cm dbh to examine demographic variation at this site that would account for those observed habitat preferences. We tested two predictions. First, within a given topographic habitat, species specializing on that habitat (‘residents’) should outperform species that are specialists of other habitats (‘foreigners’). Second, across different topographic habitats, species should perform best in the habitat on which they specialize (‘home’) compared to other habitats (‘away’). Species’ performance was estimated using growth and mortality rates. Results: In hierarchical models with species identity as a random effect, we found no evidence of a demographic advantage to resident species. Indeed, growth rates were most often higher for foreign species. Similarly, comparisons of species on their home vs. away habitats revealed no sign of a performance advantage on the home habitat. Conclusions: We reject the hypothesis that species distributions along a ridge-valley catena at Korup are caused by species differences in trees ≥1 cm dbh. Since there must be a demographic cause for habitat specialization, we offer three alternatives. First, the demographic advantage specialists have at home occurs at the reproductive or seedling stage, in sizes smaller than we census in the forest plot. Second, species may have higher performance on their preferred habitat when density is low, but when population builds up, there are negative density-dependent feedbacks that reduce performance. Third, demographic filtering may be produced by extreme environmental conditions that we did not observe during the census interval

    \u3ci\u3eZea mays\u3c/i\u3e genotype influences microbial and viral rhizobiome community structure

    Get PDF
    Plant genotype is recognized to contribute to variations in microbial community structure in the rhizosphere, soil adherent to roots. However, the extent to which the viral community varies has remained poorly understood and has the potential to contribute to variation in soil microbial communities. Here we cultivated replicates of two Zea mays genotypes, parviglumis and B73, in a greenhouse and harvested the rhizobiome (rhizoplane and rhizosphere) to identify the abundance of cells and viruses as well as rhizobiome microbial and viral community using 16S rRNA gene amplicon sequencing and genome resolved metagenomics. Our results demonstrated that viruses exceeded microbial abundance in the rhizobiome of parviglumis and B73 with a significant variation in both the microbial and viral community between the two genotypes. Of the viral contigs identified only 4.5% (n = 7) of total viral contigs were shared between the two genotypes, demonstrating that plants even at the level of genotype can significantly alter the surrounding soil viral community. An auxiliary metabolic gene associated with glycoside hydrolase (GH5) degradation was identified in one viral metagenome-assembled genome (vOTU) identified in the B73 rhizobiome infecting Propionibacteriaceae (Actinobacteriota) further demonstrating the viral contribution in metabolic potential for carbohydrate degradation and carbon cycling in the rhizosphere. This variation demonstrates the potential of plant genotype to contribute to microbial and viral heterogeneity in soil systems and harbors genes capable of contributing to carbon cycling in the rhizosphere

    Dehydration Stress Memory: Gene Networks Linked to Physiological Responses During Repeated Stresses of Zea mays

    Get PDF
    Stress memory refers to the observation that an initial, sub-lethal stress alters plants’ responses to subsequent stresses. Previous transcriptome analyses of maize seedlings exposed to a repeated dehydration stress has revealed the existence of transcriptional stress memory in Zea mays. Whether drought-related physiological responses also display memory and how transcriptional memory translates into physiological memory are fundamental questions that are still unanswered. Using a systems-biology approach we investigate whether/how transcription memory responses established in the genome-wide analysis of Z. mays correlate with 14 physiological parameters measured during a repeated exposure of maize seedlings to dehydration stress. Co-expression network analysis revealed ten gene modules correlating strongly with particular physiological processes, and one module displaying strong, yet divergent, correlations with several processes suggesting involvement of these genes in coordinated responses across networks. Two processes key to the drought response, stomatal conductance and non-photochemical quenching, displayed contrasting memory patterns that may reflect trade-offs related to metabolic costs versus benefits of cellular protection. The main contribution of this study is the demonstration of coordinated changes in transcription memory responses at the genome level and integrated physiological responses at the cellular level upon repetitive stress exposures. The results obtained by the network-based systems analysis challenge the commonly held view that short-term physiological responses to stress are primarily mediated biochemically

    Integrating tropical research into biology education is urgently needed

    Get PDF
    Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperatezone lens. Integrating tropical research into biology education is urgently needed to tackle these issues. The tropics are engines of Earth systems that regulate global cycles of carbon and water, and are thus critical for management of greenhouse gases. Compared with higher-latitude areas, tropical regions contain a greater diversity of biomes, organisms, and complexity of biological interactions. The tropics house the majority of the world’s human population and provide important global commodities from species that originated there: coffee, chocolate, palm oil, and species that yield the cancer drugs vincristine and vinblastine. Tropical regions, especially biodiversity hotspots, harbor zoonoses, thereby having an important role in emerging infectious diseases amidst the complex interactions of global environmental change and wildlife migration [1]. These well-known roles are oversimplified, but serve to highlight the global biological importance of tropical systems. Despite the importance of tropical regions, biology curricula worldwide generally lack coverage of tropical research. Given logistical, economic, or other barriers, it is difficult for undergraduate biology instructors to provide their students with field-based experience in tropical biology research in a diverse range of settings, an issue exacerbated by the Coronavirus Disease 2019 (COVID-19) pandemic. Even in the tropics, field-based experience may be limited to home regions. When tropical biology is introduced in curricula, it is often through a temperate- zone lens that does not do justice to the distinct ecosystems, sociopolitical histories, and conservation issues that exist across tropical countries and regions [2]. The tropics are often caricatured as distant locations known for their remarkable biodiversity, complicated species interactions, and unchecked deforestation. This presentation, often originating from a colonial and culturally biased perspective, may fail to highlight the role of tropical ecosystems in global environmental and social challenges that accompany rising temperatures, worldwide biodiversity loss, zoonotic pandemics, and the environmental costs of ensuring food, water, and other ecosystem services for humans [3]

    Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests

    Get PDF
    Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree\u27s growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible
    corecore