
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Papers in Natural Resources Natural Resources, School of 

1-1-2022 

Joint effects of climate, tree size, and year on annual tree growth Joint effects of climate, tree size, and year on annual tree growth 

derived from tree-ring records of ten globally distributed forests derived from tree-ring records of ten globally distributed forests 

Kristina J. Anderson-Teixeira 
Conservation and Research Center (National Zoo) 

Valentine Herrmann 
Conservation and Research Center (National Zoo) 

Christine R. Rollinson 
Morton Arboretum 

Bianca Gonzalez 
Conservation and Research Center (National Zoo) 

Erika B. Gonzalez-Akre 
Conservation and Research Center (National Zoo) 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers 

 Part of the Natural Resources and Conservation Commons, Natural Resources Management and 

Policy Commons, and the Other Environmental Sciences Commons 

Anderson-Teixeira, Kristina J.; Herrmann, Valentine; Rollinson, Christine R.; Gonzalez, Bianca; Gonzalez-
Akre, Erika B.; Pederson, Neil; Alexander, M. Ross; Allen, Craig D.; Alfaro-Sánchez, Raquel; Awada, Tala; 
Baltzer, Jennifer L.; Baker, Patrick J.; Birch, Joseph D.; Bunyavejchewin, Sarayudh; Cherubini, Paolo; Davies, 
Stuart J.; Dow, Cameron; Helcoski, Ryan; Kašpar, Jakub; Lutz, James A.; Margolis, Ellis Q.; Maxwell, Justin 
T.; McMahon, Sean M.; Piponiot, Camille; Russo, Sabrina E.; Šamonil, Pavel; Sniderhan, Anastasia E.; 
Tepley, Alan J.; Vašíčková, Ivana; Vlam, Mart; and Zuidema, Pieter A., "Joint effects of climate, tree size, 
and year on annual tree growth derived from tree-ring records of ten globally distributed forests" (2022). 
Papers in Natural Resources. 1528. 
https://digitalcommons.unl.edu/natrespapers/1528 

This Article is brought to you for free and open access by the Natural Resources, School of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural 
Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/natrespapers
https://digitalcommons.unl.edu/natres
https://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natrespapers/1528?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Kristina J. Anderson-Teixeira, Valentine Herrmann, Christine R. Rollinson, Bianca Gonzalez, Erika B. 
Gonzalez-Akre, Neil Pederson, M. Ross Alexander, Craig D. Allen, Raquel Alfaro-Sánchez, Tala Awada, 
Jennifer L. Baltzer, Patrick J. Baker, Joseph D. Birch, Sarayudh Bunyavejchewin, Paolo Cherubini, Stuart J. 
Davies, Cameron Dow, Ryan Helcoski, Jakub Kašpar, James A. Lutz, Ellis Q. Margolis, Justin T. Maxwell, 
Sean M. McMahon, Camille Piponiot, Sabrina E. Russo, Pavel Šamonil, Anastasia E. Sniderhan, Alan J. 
Tepley, Ivana Vašíčková, Mart Vlam, and Pieter A. Zuidema 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
natrespapers/1528 

https://digitalcommons.unl.edu/natrespapers/1528
https://digitalcommons.unl.edu/natrespapers/1528


Glob Change Biol. 2022;28:245–266.	﻿�   | 245wileyonlinelibrary.com/journal/gcb

Received: 11 June 2021  | Revised: 31 August 2021  | Accepted: 3 September 2021

DOI: 10.1111/gcb.15934  

P R I M A R Y  R E S E A R C H  A R T I C L E

Joint effects of climate, tree size, and year on annual tree 
growth derived from tree-ring records of ten globally 
distributed forests

Kristina J. Anderson-Teixeira1,2  |   Valentine Herrmann1  |   Christine R. Rollinson3  |   
Bianca Gonzalez1 |   Erika B. Gonzalez-Akre1  |   Neil Pederson4  |   M. Ross Alexander5  |    
Craig D. Allen6  |   Raquel Alfaro-Sánchez7  |   Tala Awada8  |   Jennifer L. Baltzer7  |   
Patrick J. Baker9  |   Joseph D. Birch10  |   Sarayudh Bunyavejchewin11  |   
Paolo Cherubini12,13  |   Stuart J. Davies2  |   Cameron Dow1,14  |   Ryan Helcoski1 |   
Jakub Kašpar15  |   James A. Lutz16  |   Ellis Q. Margolis17  |   Justin T. Maxwell18  |   
Sean M. McMahon2,19  |   Camille Piponiot1,2,20  |   Sabrina E. Russo21,22  |    
Pavel Šamonil15  |   Anastasia E. Sniderhan7  |   Alan J. Tepley1,23  |   
Ivana Vašíčková15  |   Mart Vlam24 |   Pieter A. Zuidema24

1Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
2Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
3Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
4Harvard University, Petersham, Massachusetts, USA
5Midwest Dendro LLC, Naperville, Illinois, USA
6Department of Geography & Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
7Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
8School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
9School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC., Australia
10University of Alberta, Edmonton, Alberta, Canada
11National Parks Wildlife and Plant Conservation Department, Bangkok, Thailand
12Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
13Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
14Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
15Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Brno, Czech Republic
16S. J. & Jessie E. Quinney College of Natural Resources and the Ecology Center, Utah State University, Logan, Utah, USA
17Fort Collins Science Center, U.S. Geological Survey, New Mexico Landscapes Field Station, Los Alamos, New Mexico, USA
18Department of Geography, Indiana University, Bloomington, Indiana, USA
19Smithsonian Environmental Research Center, Edgewater, Maryland, USA
20CIRAD, Montpellier, France
21School of Biological Sciences, University of Nebraska, Lincoln, USA
22Center for Plant Science Innovation, University of Nebraska, Lincoln, USA
23Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
24Forest Ecology and Forest Management Group, Wageningen, The Netherlands

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their 
work is in the public domain in the USA.

www.wileyonlinelibrary.com/journal/gcb
mailto:﻿
https://orcid.org/0000-0001-8461-9713
https://orcid.org/0000-0002-4519-481X
https://orcid.org/0000-0003-0181-7293
https://orcid.org/0000-0001-8305-6672
https://orcid.org/0000-0003-3830-263X
https://orcid.org/0000-0003-1106-1100
https://orcid.org/0000-0002-8777-5989
https://orcid.org/0000-0001-7357-3027
https://orcid.org/0000-0002-0462-2339
https://orcid.org/0000-0001-7476-5928
https://orcid.org/0000-0002-6560-7124
https://orcid.org/0000-0001-8644-7345
https://orcid.org/0000-0002-1976-5041
https://orcid.org/0000-0002-9809-250X
https://orcid.org/0000-0002-8596-7522
https://orcid.org/0000-0002-8365-598X
https://orcid.org/0000-0003-1780-6310
https://orcid.org/0000-0002-2560-0710
https://orcid.org/0000-0002-0595-9005
https://orcid.org/0000-0001-9195-3146
https://orcid.org/0000-0001-8302-6908
https://orcid.org/0000-0002-3473-1982
https://orcid.org/0000-0002-6788-2410
https://orcid.org/0000-0002-7722-8797
https://orcid.org/0000-0003-4823-3180
https://orcid.org/0000-0002-5701-9613
https://orcid.org/0000-0002-6070-5956
https://orcid.org/0000-0001-8100-1168
http://creativecommons.org/licenses/by-nc-nd/4.0/


246  |    ANDERSON-TEIXEIRA et al.

1  |  INTRODUCTION

Tree rings provide a long-term record of annual growth increments 
that is invaluable for understanding forests in an era of global change 
(Amoroso et al., 2017; Fritts & Swetnam, 1989; Zuidema et al., 2013). 
Spanning time scales of decades to centuries or even millennia, they 
provide by far the most robust method for characterizing the in-
terannual climate sensitivity of tree growth (Bräker, 2002; Fritts, 
1976). Combined with forest censuses, they can be used to esti-
mate forest woody productivity (Davis et al., 2009; Dye et al., 2016; 
Graumlich et al., 1989) and its climate sensitivity (Helcoski et al., 
2019; Klesse et al., 2018; Teets et al., 2018). Tree rings also provide 
the long-term perspective necessary for understanding how slowly 
changing environmental drivers including rising atmospheric carbon 
dioxide (CO2) concentrations, changing climate, and other anthro-
pogenic and natural changes are influencing tree growth and forest 
productivity (e.g., Levesque et al., 2017; Mathias & Thomas, 2018; 

Walker et al., 2021). This information is critical to predicting forest 
responses to anthropogenic changes—particularly climate change—
and thereby reducing the large uncertainty surrounding future con-
tributions of Earth's forests to the global carbon cycle (Arora et al., 
2020). Yet, collection and analysis of dendrochronological records 
has traditionally been optimized to detect climate signals rather than 
to understand variation among trees—including size-related varia-
tion in climate sensitivity (e.g., Bennett et al., 2015; McGregor et al., 
2021; Rollinson et al., 2021)—or to predict forest productivity, its 
climate sensitivity, and how it may be changing (Babst et al., 2018; 
Cherubini et al., 1998; Klesse et al., 2018; Nehrbass-Ahles et al., 
2014; Wilmking et al., 2020). As a result, prevailing approaches hold 
a number of limitations for using tree rings to address pressing ques-
tions concerning forest carbon sequestration in the current era of 
rapid environmental change.

To realistically estimate forest woody productivity, it is neces-
sary to measure or model the growth rate of individual trees within 
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Abstract
Tree rings provide an invaluable long-term record for understanding how climate and 
other drivers shape tree growth and forest productivity. However, conventional tree-
ring analysis methods were not designed to simultaneously test effects of climate, 
tree size, and other drivers on individual growth. This has limited the potential to test 
ecologically relevant hypotheses on tree growth sensitivity to environmental drivers 
and their interactions with tree size. Here, we develop and apply a new method to 
simultaneously model nonlinear effects of primary climate drivers, reconstructed tree 
diameter at breast height (DBH), and calendar year in generalized least squares mod-
els that account for the temporal autocorrelation inherent to each individual tree's 
growth. We analyze data from 3811 trees representing 40 species at 10 globally dis-
tributed sites, showing that precipitation, temperature, DBH, and calendar year have 
additively, and often interactively, influenced annual growth over the past 120 years. 
Growth responses were predominantly positive to precipitation (usually over ≥3-
month seasonal windows) and negative to temperature (usually maximum temper-
ature, over ≤3-month seasonal windows), with concave-down responses in 63% of 
relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), 
with larger trees usually more sensitive. Trends in ring width at small DBH were linked 
to the light environment under which trees established, but basal area or biomass in-
crements consistently reached maxima at intermediate DBH. Accounting for climate 
and DBH, growth rate declined over time for 92% of species in secondary or disturbed 
stands, whereas growth trends were mixed in older forests. These trends were largely 
attributable to stand dynamics as cohorts and stands age, which remain challenging 
to disentangle from global change drivers. By providing a parsimonious approach for 
characterizing multiple interacting drivers of tree growth, our method reveals a more 
complete picture of the factors influencing growth than has previously been possible.
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climate sensitivity, environmental change, Forest Global Earth Observatory (ForestGEO), 
generalized least squares (GLS), nonlinear, tree diameter, tree rings
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a stand based on the primary biotic and abiotic drivers. Specifically, 
what is needed is an analysis framework that can capture the ad-
ditive and interactive effects of climate, tree size (most commonly 
diameter at breast height, DBH), and other environmental drivers, 
all of which may be best described by nonlinear functions (Muller-
Landau et al., 2006; Rollinson et al., 2021). Although multifactorial 
and sometimes nonlinear individual-based analysis frameworks have 
been applied in tree-ring analysis (e.g., Evans et al., 2017; Klesse 
et al., 2020; Rollinson et al., 2021; Zuidema et al., 2020), their use 
has been relatively limited, and none simultaneously account for 
climate, DBH, and calendar year (a proxy for slowly changing envi-
ronmental drivers). Below, we outline major hypotheses regarding 
the influence of these factors on tree growth that can best be ad-
dressed using a multifactorial, nonlinear approach to tree-ring anal-
ysis (Table 1). We then develop such a framework and apply it to test 
these hypotheses.

1.1  | Key hypotheses on tree growth

Understanding the climate sensitivity of tree growth is critical to pre-
dicting forest dynamics and productivity as the climate changes. The 
classic dendrochronological approach to characterizing the climate 
sensitivity of tree growth describes linear relationships between 
the primary growth-limiting climate factor (moisture or tempera-
ture) and population-level growth responses captured in ring-width 
index chronologies (Cook, 1985; Fritts, 1976; Speer, 2010). While 
invaluable for applications such as reconstructing past climates (e.g., 
Buntgen et al., 2011), accurately representing the climate sensitivity 
of forest productivity requires an analysis of sensitivity to multiple 
climatic variables and how this varies across trees in a forest stand 
(Babst et al., 2018). Precipitation and temperature can have additive 
or interactive effects on growth (Foster et al., 2016; Meko et al., 
2011; Sánchez-Salguero et al., 2015; Vlam et al., 2014; Zuidema 
et al., 2020), and we hypothesize that both influence the growth of 
most species, often over different seasonal windows (Table 1). In 
addition, we hypothesize that nonlinear climate responses, already 
known to be widespread within forest settings (Rollinson et al., 2021; 
Wilmking et al., 2020; Woodhouse, 1999), are in fact the predomi-
nant form of response in forests around the world (Table 1). Finally, 
the influence of diameter at breast height (DBH) is typically removed 
through detrending (Cook & Peters, 1997), which eliminates the po-
tential to directly model its influence on climate sensitivity, but we 
hypothesize that interactive effects of DBH and climate are, in fact, 
quite common in forest settings and fundamental to understanding 
climate change responses of forests (Table 1; Bennett et al., 2015; 
McGregor et al., 2021; Rollinson et al., 2021; Trouillier et al., 2019).

Tree DBH scales with numerous traits affecting tree growth (e.g., 
height, crown size and position, root mass, hydraulic architecture) 
and, therefore, is itself linked to growth (e.g., Anderson-Teixeira, 
McGarvey, et al., 2015). Yet, there remain inconsistencies across dis-
ciplines (dendrochronology, forest ecology) as to what is considered 
a typical growth pattern. Dendrochronological records from trees 

TA B L E  1  Summary of hypotheses and specific predictions 
tested using the method developed here, along with the frequency 
at which they were supported in our analyses of tree-ring data from 
ten globally distributed forests

Hypotheses and specific predictions
Frequency 
observed

Interannual climate variationa

Drought limits growth, but water responses are nonlinear.

Growth responds positively to water, 93% (42/45 SSC)

…but positive responses decelerate or 
decline at high precipitation.

76% (32/42 SSC)

High temperatures (T) limit growth, often nonlinearly.

Growth responses to T are 
predominantly either negative…

29% (13/45 SSC)

…or non-linear concave down. 40% (18/45 SSC)

However, there are cases where growth 
increases with T.

15% (7/45 SSC)

Climate sensitivity often varies with tree diameter at breast 
height (DBH).

Water and DBH have an interactive 
effect on growth.

44% (16/36 SSC)b

Temperature and DBH have an 
interactive effect on growth.

38% (12/32 SSC)b

Diameter (DBH)c

DBH—ring width (RW) relationships depend upon the light 
environment.

RW declines with DBH for light-
demanding species,

46% (6/13 SSC)

…but initially increases with DBH for 
shade-tolerant species.

73% (8/11 SSC)d

Basal area and biomass increments reach maxima at intermediate 
DBH.

Basal area increment (BAI) peaks at 
intermediate DBH.

95% (41/43 SSC)

Biomass increment (∆AGB) peaks at 
intermediate DBH.

98% (42/43 SSC)

Calendar yeare

Size-corrected growth rates decline with time since severe 
disturbance.

In secondary or disturbed forests, 
growth rates of most species have 
declined.

92% (23/25 sp. 
at 7 sites)

In forests dominated by >100-yr-old trees, growth trends are 
mixed.

In older forests, growth rates of some 
species have declined,

50% (6/12 sp. 
at 3 sites)

….whereas others have increased. 25% (3/12 sp. 
at 3 sites)

Note: Abbreviation: SSC, species–site combination.
aResults summarized here are for climate-only models with RW as 
response variable.
bRefers to SSC with significant (p<0.05) main effect of climate on RW.
cResults summarized here are for models without year.
d100% (9/9 SSC) for models including year.
eResults summarized here are for models with BAI as response variable.
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that established in high-light environments commonly show a pat-
tern in which radial stem growth increments (ring width, RW) are 
initially large and decline with DBH (Fritts, 1976), whereas censuses 
of globally distributed forests indicate that diameter increments 
most commonly increase with DBH (Anderson-Teixeira, McGarvey, 
et al., 2015; Muller-Landau et al., 2006). We hypothesize that this 
discrepancy is primarily a distinction between trees that establish 
in the open versus in the understory (Table 1, Lorimer et al., 1988). 
Building upon observed ontogenetic patterns in RW, dendrochro-
nology studies often adopt a null hypothesis that the annual basal 
area increment (BAI) fluctuates around a constant mean after a juve-
nile growth phase (Biondi & Qeadan, 2008; Fritts, 1976)—a pattern 
that we would not expect to hold in understory-established trees 
(Table 1). Finally, there is debate as to whether the aboveground 
biomass increment (ΔAGB) increases continuously with DBH (Foster 
et al., 2016; Meakem et al., 2018; Sillett et al., 2010; Stephenson 
et al., 2014) or peaks at intermediate DBH and then plateaus or de-
clines as trees divert carbon to other functions such as reproduc-
tion and respiration (Sheil et al., 2017; Thomas, 2011; West, 2020). 
Following the finding that the latter pattern is common for individ-
ual trees whereas the former emerges in “cross-sectional” analyses 
of forest stands (Forrester, 2021), we hypothesize that ΔAGB—and 
also BAI—peaks and declines as DBH increases (Table 1). Discerning 
these ontogenetic growth trends is essential not only for predict-
ing the growth rate of any given tree but also for standardizing for 
DBH to deduce the influence of slowly changing environmental driv-
ers (see next paragraph, Peters et al., 2015), with the reliability of 
such analyses contingent upon accurate assumptions of ontogenetic 
growth patterns.

Beyond the direct effects of climate, other factors, such as rising 
atmospheric CO2 concentrations, changes in atmospheric deposi-
tion of sulfur dioxide (SO2) and nitrogen oxides (NOx), and the indi-
rect effects of climate change all potentially influence tree growth 
(Belmecheri et al., 2021; Levesque et al., 2017; Mathias & Thomas, 
2018; Maxwell et al., 2019; Takahashi et al., 2020; Walker et al., 2021). 
Understanding these effects is central to predicting the future of the 
terrestrial carbon sink (Walker et al., 2021). Yet, characterizing how 
tree growth and forest productivity are responding to slowly chang-
ing environmental drivers is challenging and uncertain. Ontogenetic 
patterns in tree growth must be accounted for, yet two of the most 
commonly used methods of standardizing for tree size, conservative 
detrending and basal area correction (Peters et al., 2015), assume 
certain growth patterns unlikely to be universal in forest settings, 
as discussed above. Approaches that combine cross-sectional with 
temporal analyses to correct for growth ontogeny, such as regional 
curve standardization, perform better at growth trend detection 
(Peters et al., 2015). Yet, even after correcting for ontogeny, growth 
trend detection remains subject to various potential sampling and 
analysis biases, which result in a limited potential of a contemporary 
set of tree cores to represent the growth history of a population 
(Bowman et al., 2013; Brienen et al., 2012, 2017; Cherubini et al., 
1998; Duchesne et al., 2019; Hember et al., 2019; Nehrbass-Ahles 
et al., 2014; Sullivan et al., 2016). Tree growth rates are sensitive 

to stand dynamics, with competition—the intensity of which tends 
to increase as forests mature—reducing woody growth rates (e.g., 
Zhang et al., 2015). Similarly, ecosystem-level carbon allocation to 
woody growth—as opposed to leaf or fine root production, repro-
duction, defenses, etc.—has been shown to decline as forest stands 
age (Collalti et al., 2020; DeLucia et al., 2007; Goulden et al., 2011; 
Pregitzer & Euskirchen, 2004; West, 2020). Thus, we hypothesize 
that size-corrected growth rates of tree populations sampled from 
within secondary or severely disturbed stands (i.e., those with large 
recruitment pulses within the past century) will generally decline, 
whereas populations sampled from older, relatively undisturbed 
stands will display mixed growth trends that are more dependent on 
external environmental drivers (Table 1).

We address the above hypotheses (Table 1) across 10 forested 
sites spanning 52° latitude, using a new method that allows simul-
taneous consideration of the effects of primary climate drivers (i.e., 
the most influential climate variables and the seasonal window over 
which they operate), DBH, and calendar year on annual tree growth.

2  | MATERIALS AND METHODS

2.1  | Data sources and preparation

We analyzed tree-ring data, most of which were collected for earlier 
studies (see references in Table 2), from 10 sites ranging from 9.15° 
to 61.30°N latitude and representing a wide range of forest and 
tree types: tropical broadleaf deciduous and evergreen, temperate 
broadleaf deciduous and conifer, and boreal conifer (Table 2, Tables 
S1 and S2). Nine of these sites (exception: LT) were co-located with 
large forest dynamics plots of the Forest Global Earth Observatory 
(ForestGEO, Anderson-Teixeira, Davies, et al., 2015; Davies et al., 
2021). Trees were cored within the ForestGEO plots (n  =  5  sites) 
and/or nearby within similar forest types (n = 5  sites), following a 
variety of sampling protocols designed to meet the objectives of the 
original studies (Tables S1, S3). In using this diversity of data sources, 
we ensured that our approach could handle challenges presented by 
varying methodologies and forest types.

All tree cores were cross-dated and measured by the original re-
searchers using standard dendrochronological practices (Stokes & 
Smiley, 1968). From among the full set of original RW measurements, 
we excluded cores for which we detected technical errors (e.g., label-
ing inconsistencies, obvious dating errors) that could not be resolved 
before finalizing the analysis. We also excluded records with small 
sample sizes or highly anomalous growth patterns, including (a) spe-
cies with <7 cores, (b) cores with <30 years of record, (c) contiguous 
portions of cores containing large outliers (RW >mean plus 5 x SD of 
RW for the entire core), and (d) the final 20 years prior to death for 
trees cored when dead. The final criterion was implemented to avoid 
periods of growth decline and potentially altered climate sensitiv-
ity prior to death (Cailleret et al., 2017; DeSoto et al., 2020). From 
analyses including DBH (see below), we further excluded (a) trees 
for which we lacked data required to reconstruct DBH, (b) trees for 
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which there was a significant inconsistency between measured DBH 
and the sum of RW’s across the core (Appendix S2), and (c) poorly 
represented tails of the DBH distribution, starting where recon-
structed DBH (see below) included <3 conspecific trees. In total, this 
resulted in inclusion of 4655 cores from 3811 trees, 4513 of which 
(from 3705 trees) could be included in analyses with DBH (Table S3).

For each year in the tree-ring records, we reconstructed (i.e., 
back-calculated) DBH, as detailed in Appendix S2. We applied allo-
metric equations for bark thickness to account for changes in bark 
thickness as the tree grew (Appendix S2; Tables S2, S4). Once DBH 
had been reconstructed, we estimated basal area (BA = πr2, where r 
is radius) and aboveground biomass (AGB). Biomass allometries for 
temperate and tropical species were calculated using the R packages 
allodb (Gonzalez-Akre et al., 2021) and BIOMASS (Réjou-Méchain 
et al., 2017), respectively. We then calculated basal area increment 
(BAI = Bay+1-BAy, where y is year) and aboveground biomass growth 
increments (ΔAGB = AGBy+1-AGBy).

Monthly climate data for 1901–2019 were obtained from 
CRU v.4.04 (Harris et al., 2014, 2020), and in a few cases cor-
rected based on higher-resolution or local records (Appendix S3). 
Variables considered here included average daily minimum, maxi-
mum, and mean temperatures (Tmin, Tmax, Tmean, respectively); pre-
cipitation (PPT); and, when deemed reliable (Appendix S3), potential 

evapotranspiration (PET) and precipitation day frequency (PDF). For 
the one riparian site, NIO, we tested for a relationship with stream 
flow, for which we obtained data for the Sparks, Nebraska station 
(station code: 06461500; 42°54’14“N, 100°26’13”W) from the 
U.S. Geological Survey (USGS) National Water Information System 
(https://water​data.usgs.gov/nwis/uv/?site_no=06461​500&agency_
cd=USGS&refer​red_modul​e=sw). All ForestGEO climate records 
used here are archived in the ForestGEO Climate Data Portal, v1.0 
(https://doi.org/10.5281/ZENODO.3958215).

2.2  | Data analysis

Data analysis consisted of two main steps: (a) identifying the primary 
climate drivers (i.e., variables and seasonal windows over which 
they are most influential on tree growth) and (b) combining these 
climate drivers, DBH, and year into a multivariate model (Figure 1). 
The analysis was run separately for each site (step 1), site–species 
combination (step 2), and each response variable estimating differ-
ent measures of tree growth (RW, BAI, or Δ AGB). We note that the 
decision to identify primary climate drivers at the level of site, as 
opposed to species, was motivated by the expectation that differ-
ences in the most influential climate drivers across species in one 

TA B L E  2  Sites included in this analysis. Here and throughout, sites are ordered by descending mean annual temperature. Additional site 
information is provided in Appendix S1 and Table S1, and tree species and sampling details are detailed in Tables S2 and S3

Site code Site name Location
July T 
(°C)a

Jan T 
(°C)a

MAP 
(mm)a

Vegetation 
type(s)

n 
species

n 
cores Original publication(s)

BCNM Barro Colorado 
Nature 
Monument

Panama 26.6 25.5 2,627 BD, BE 3 84 Alfaro-Sánchez et al., 
(2017)

HKK Huai Kha Khaeng Thailand 25.7 22.4 1,428 BD, BE 4 470 Vlam et al., (2014)

SCBI Smithsonian 
Conservation 
Biology Institute

Virginia, USA 24.3 0.9 1,018 BD, C 14 704 Bourg et al., (2013); 
Helcoski et al., 
(2019)

LDW Lilly Dickey Woods Indiana, USA 24.0 −2.2 1,099 BD 6 170 Maxwell et al., (2016)

HF Harvard Forest Massachusetts, 
USA

21.6 −5.1 1,104 BD, C 4 366 Dye et al., (2016); 
Alexander et al., 
(2019); Finzi et al., 
(2020)

ZOF Žofín Forest 
Dynamics Plotb

Czech Republic 18.1 −2.0 731 C, BD 4 2,059 Šamonil et al., (2013)

NIO Niobrara Nebraska, USA 23.4 −6.5 520 BD 1 138 Bumann et al., (2019)

LT Little Tesuqueb New Mexico, 
USA

16.2 −3.1 608 C 2 34

CB Cedar Breaksb Utah, USA 13.8 −6.2 842 C, BD 7 187 Birch et al., (2020a), 
Birch et al., (2020b), 
Birch et al., (2020c), 
Birch et al., (2020d)

SC Scotty Creek Northwest 
Territories, 
Canada

16.5 −24.7 373 C 1 443 Sniderhan and Baltzer, 
(2016)

Note: Abbreviations: BD, Broadleaf Deciduous; BE, Broadleaf Evergreen; C, Conifer; MAP, mean annual precipitation; T, mean monthly temperature.
aRefers to 1950–2019 mean climate.
bOlder forest, with majority of sampled trees established before 1900.

https://waterdata.usgs.gov/nwis/uv/?site_no=06461500&agency_cd=USGS&referred_module=sw
https://waterdata.usgs.gov/nwis/uv/?site_no=06461500&agency_cd=USGS&referred_module=sw
https://doi.org/10.5281/ZENODO.3958215
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site would be small compared with cross-site differences (Figure 2); 
however, analyses focused on interspecific differences could opti-
mize species-specific climate sensitivity estimates by fitting indi-
vidually by species.

2.2.1  |  Step 1: Identifying primary climate drivers

We used the climwin package in R (van de Pol et al., 2016) to iden-
tify the most influential climate variable (i.e., that most strongly 

F IGURE  1 Schematic illustration of the analysis process. In step 1, the R package climwin (van de Pol et al., 2016) is used to identify the 
primary climate drivers in water and temperature variable groups for each site, defined as the variable-seasonal window combination that 
are most strongly correlated to the residual variation around splines fit to trends in growth (here, ring width, RW) for all cores sampled at the 
site. In step 2, a generalized last squares model is used to produce a combined model with the previously identified drivers, reconstructed 
diameter at breast height (DBH), and year. Example plots show raw data and partial effects of each variable from the best multivariate model 
for Pinus ponderosa P. Lawson & C. Lawson at Little Tesuque, New Mexico, USA [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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correlated with annual growth) and the seasonal window over which 
its effect was strongest for each of two categories of variables: a 
temperature group (Tmin, Tmax, Tmean, and PET) and a precipitation 
group (PPT, PDF). To remove low-frequency variation that most likely 
represents responses to non-climatic drivers (e.g., growth and aging 
of the tree, change in competitive dynamics, atmospheric pollution), 
we detrended the response variables by fitting penalized thin-plate 
regression splines in generalized additive models (GAM, functions 
gam and s in the R package mgcv, Wood, 2011) to individual growth 
records (RW, BAI, or ΔAGB) from each core, and extracted the re-
sidual variation for each observation. The smoothing parameters 
were automatically selected by the gam function with generalized 
cross-validation. Our application of the thin-plate regression splines 
acts similar to more traditional a priori detrending methods using a 
two-third spline commonly used in dendrochronology studies and 
results in similar predictor variable selection (Appendix S4; Cook & 
Peters, 1997; Rollinson et al., 2021).

We then used climwin to identify the climate drivers that most 
strongly correlated with the individual tree-level residuals of the 
growth variables, RW, BAI, or ΔAGB, specifying linear and quadratic 
terms to allow for potential nonlinearities in the climate response. 

Within climwin, we specified a mixed-effects model in which the 
fixed effects were the climate variables and the random intercepts 
were species (when n ≥3) and core identity (noting that these effects 
should be minimal given that residuals are centered around zero). 
For each climate variable, we ran permutations for all possible com-
binations of consecutive months within a 15-month period ending 
near the time of growth cessation of each annual ring (Table S1). 
Climwin runs all potential models to select the best fit (lowest Akaike 
information criterion corrected for small sample size, AICc), and does 
k-fold cross-validation in its computation of AICc to guard against 
over-fitting (van de Pol et al., 2016). For each group of candidate 
climate variables (water and temperature; Figure 1), we selected the 
variable - seasonal window combination with the lowest AICc as a 
candidate climate variable for the multivariate models.

We tested whether this process identified similar seasonal 
windows and direction of response as would be identified using 
traditional methods for four species (detailed in Appendix S4). 
Furthermore, we explored alternate methods of climate driver se-
lection for the two sites that have undergone the most rapid changes 
in climate and tree growth: LT, where increasingly warm drought has 
dramatically reduced growth (Touchan et al., 2011; Williams et al., 

F IGURE  2 Example comparison of climate sensitivity derived via traditional methods (a) and our approach (b-f). Example is for the 
sensitivity of 14 species at SCBI to potential evapotranspiration (PET). Panel (a) shows a matrix of Pearson correlations between ring-width 
index and monthly climate variables (produced using the bootRes package in R, Zang & Biondi, 2013). Black rectangle represents the period 
selected by climwin as the most influential window. Panels (b-d) give statistics for seasonal windows tested in climwin, where window open 
and close refer to the start- and end-months of the window tested, expressed as months prior to current August, and cells across the lower 
diagonal indicate single-month tests (akin to panel a). Panels (b) and (c) give values of linear and quadratic terms for each seasonal window, 
and (d) gives the difference in Akaike information criterion for small sample sizes ΔAICc for each. The seasonal window with the minimum 
ΔAICc (1–3 months prior to August, or May-July; black circles), was identified as the most influential window. Panel (e) shows the correlation 
of individual-level residuals to PET, with the function fit in climwin. Finally, panel (f) shows the generalized least squares model output, where 
PET was a candidate driver variable (along with PPT; DBH not included in this model). Plotted are responses of species for which PET was 
included in the top model, with best-fit polynomials plotted with solid lines when both first- and second-order terms are significant, dash-
dotted lines when only one term is significant, and dotted lines when neither is significant. Transparent ribbons indicate 95% confidence 
intervals. Species names corresponding to the codes are given in Table S2 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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2013), and SC, where rapidly rising temperatures are causing per-
mafrost thaw, which limits access to soil moisture during summer 
months and drives growth declines (Sniderhan & Baltzer, 2016). We 
ultimately determined that the method described above captured 
these sources of variation (Appendix S5).

2.2.2  |  Step 2: Combining drivers in generalized 
least square model

We next combined the primary climate drivers in temperature and 
precipitation variable groups (included in all models) and DBH (in-
cluded in models with DBH and DBH–climate interactions) as candi-
date variables in linear mixed-effects models (function lme in the R 
package nlme, Pinheiro et al., 2021). In all models, we included core 
identity as a random intercept and year as a continuous time co-
variate for the within-group correlation structure (function corCAR1) 
to account for temporal autocorrelation (similar to how detrending 
would). We will refer to this model as a generalized least squares 
(GLS) model (Figure 1). Within the GLS models, our response vari-
ables were raw, log-transformed growth estimates (as opposed to 
residuals): log[RW], log[BAI], or log[ΔAGB]. Prior to running the 
models, we checked for collinearity among the candidate variables 
using the vifstep function (Naimi et al., 2014). Our analysis code was 
programmed to remove any variable with a variance inflation factor 
>3, but none required removal.

For each species independently, we ran GLS models including 
every possible combination of independent fixed-effect variables 
(i.e., candidate climate drivers, DBH, and year), including both first- 
and second-order terms for each. For climate response, we allowed 
concave-down fits but ignored any concave-up fits on the basis that 
exponential functions would be captured by a linear fit to the log-
transformed growth variables, while u-shaped fits are not expected 
biologically.

As an example, a full model for log[RW] responses to PPT, Tmax, 
and DBH would look like this in R:

where x is a complete data set for one species at one site (all records 
after excluding cores as described above, and with no missing values). 
The method is set to maximum likelihood (ML) during the fixed effect 
model selection phase, but to restricted maximum likelihood (REML) 
for parameter estimation with the best model.

For models including interactive effects of climate and DBH, we 
tested for interactions between first-order linear terms for climate 
drivers and DBH.

To test for year effects, we limited the analysis to species with 
reasonable coverage of the DBH x year matrix. Specifically, we re-
quired that the species be represented by cores from ≥3 trees and 
that the core record spanned ≥40% the total DBH range for ≥2/3 

of the total time range analyzed. To avoid severe big-tree selection 
bias (Brienen et al., 2012), we also required that the minimum DBH 
sampled be ≤25 cm (exception: Abies alba Mill. at ZOF, where mature 
trees <50 cm DBH are extremely rare). Species that failed to meet 
these criteria (n = 8; Table S3) were excluded from the analysis of 
temporal trends, but were included in analyses of climate and DBH 
and their interactions. We then ran models as described above, in-
cluding a first-order linear effect of year. We note that the random 
effect of tree may reduce analytical biases arising from persistent 
growth differences among individuals that are not accounted for by 
DBH or year (Brienen et al., 2012, 2017). To verify that GLS model 
trends for year were not an artifact of inherent covariation between 
DBH and year within each core, we compared GLS results with an 
analysis of DBH–growth relationships by decade.

Within each of three categories of models run (climate only, cli-
mate + DBH, climate × DBH, climate + DBH + year), we selected as 
the top model that with the lowest AICc. We did not run models of 
precipitation × temperature, climate × DBH + year, or climate × year, 
which would be possible in the GLS model framework but would 
require additional statistical and conceptual validation beyond the 
scope of the current analysis.

3  |  RESULTS

3.1  | Validation of the method

Our process identified similar primary climate drivers to those 
identified via established dendrochronological analysis methods 
for identifying climate signals (Figure 2; Figures S1-S4; Table S5; 
Appendix S4). Although one-to-one correspondence of estimated 
slope coefficients describing the response of tree growth to interan-
nual climatic variation was neither expected nor observed, estimates 
obtained using the two methods were correlated and rarely differed 
significantly from one another (Appendix S4; Figures. S1-S4).

Trends with year, when assessed, were generally consistent with 
those observed in a separate analysis of DBH–growth relationships 
by year (Figure S5).

3.2  |  Full model results overview

When a precipitation variable and a temperature variable (each se-
lected using climwin; e.g., Figure 2; Figures S6-S9), DBH, and calen-
dar year were all included as candidate variables in the GLS models, 
the most common outcome was that all four were included in the top 
model and had statistically significant effects (p ≤ 0.05), regardless 
of the growth metric used (Figure 3). In general, DBH and calendar 
year explained more variation in growth rates than did climate, but 
their relative importance varied across growth metrics and sites (e.g., 
Figures S10–S13). Climate responses were generally similar regard-
less of the other variables included, although some of the weaker 
climate responses were not consistently included in top models (e.g., 

lme(log[RW]∼PPT+ I(PPT2)+Tmax+ I(T2
max

)+DBH+ I(DBH2)ε,

random= ∼1|coreID, correlation=corCAR1(form= ∼year|coreID),

data=x, na. action= "na.fail", method=εMLε)
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Tmin responses at BCNM; Figure 4; Figure S10). In contrast, effects of 
DBH and year often interacted such that the shape of the DBH re-
sponse curve or its inclusion in the top model were frequently modi-
fied by the inclusion of calendar year (Figure 3).

3.3  |  Climate sensitivity

3.3.1  |  Most influential climate drivers

At each site, the three metrics of growth (RW, BAI, and ΔAGB) ex-
hibited similar patterns in the direction of response, and relative 
strength of correlation, to climate variables across the range of po-
tential seasonal windows. However, the seasonal window exhibiting 
the strongest climatic effect on growth, and even the most influen-
tial climate variable, sometimes differed among the growth met-
rics. For eight of 20  site–variable group combinations (i.e., water 
and temperature, each at 10 sites), both the most influential climate 
variable and seasonal window were identical across growth metrics 
(e.g., PPT at SCBI; Figure S7). For nine site–variable group combina-
tions, climwin identified the same climate variable and overlapping 
seasonal windows (e.g., PET at SCBI Figure S8), and in one case (at 
HKK) different variables (Tmax and Tmean) were selected with over-
lapping seasonal windows (Figure S6). For just two site–variable 
group combinations (both variable groups at HF, where climate had 
only weak effects and mixed responses among species in the final 
models), climwin identified completely different seasonal windows 

and, for precipitation, different variables (PPT and PDF; Figure 
S9). Henceforth, unless otherwise noted, we focus on the climate 
sensitivities identified using RW as the growth metric and for the 
full set of cores (i.e., including those for which DBH could not be 
reconstructed).

Precipitation amount (PPT) was selected over precipitation fre-
quency (PDF) as the top variable in five of the eight sites for which 
both variables were available (but had no significant main effect 
at one site, NIO), and was the only option at two sites (LT and CB). 
The most influential seasonal windows were most commonly long 
(≥3  months at 7 of the 9  sites with significant main effects) and 
coincided at least partially with months of active growth in the 
current year (Figure 4; Table S1): year-round in the tropics (BCNM 
and HKK) or late spring/ summer outside of the tropics (n = 5 of 
7 sites with significant main effects). In the tropics, the long time-
windows over which precipitation was influential (12 mo at BCNM, 
9  mo at HKK) also included the majority (BCNM) or all (HKK) of 
the dry season months (<100 mm rainfall/month). Outside of the 
tropics, the most influential windows at three sites included the 
current growing season and extended back to the previous fall (LT, 
CB) or summer (SCBI), whereas they were limited to the current 
spring and early summer at LDW. At three sites (HF, ZOF, and SC), 
precipitation of the previous growing season was the most influ-
ential variable.

Within the temperature group (Figure 1), the most commonly se-
lected variables were Tmax and PET, which were identified by climwin 
as the top temperature-related driver at six and three of the 10 sites, 

F IGURE  3 Summary of top models for 
ring width as a function of climate (water 
and temperature variables), diameter at 
breast height (DBH), and calendar year. 
Arrow shapes approximate responses 
detailed in Figures 4 and 6, and S16. Each 
symbol indicates one species, and species 
are ordered alphabetically within each 
site. Overlapping arrows for the same 
species indicate that the response shape 
changed when Year was included in the 
model. For species on which the effect of 
Year was tested, the presence of only an 
arrow representing models without Year 
indicates that the effect was not included 
in the top models with Year. Interactive 
effects of climate and DBH are not shown. 
BCNM through SC are codes for ten 
forested sites spanning 52° latitude (Table 
2); sites are ordered by descending mean 
annual temperature [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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respectively, noting that PET was not available for two sites. Tmin 
was identified as the top driver at BCNM, where its effects were 
only marginally significant for one species (Figure 4). Tmean was never 
selected as the top driver. The most influential seasonal windows 
for temperature tended to be shorter than those of precipitation 
(≤3 months at 9 of 10 sites). They most commonly occurred during 

the current growing season (n = 5 of 10 sites), but there were cases 
where the most influential windows occurred during the preced-
ing dry season (BCNM), late winter/early spring (HF, ZOF), or the 
previous growing season (NIO, CB). Temperature and precipitation 
variables were rarely influential over the same seasonal window (ex-
ception: LDW).

F IGURE  4 Species-level responses of ring width to climwin-selected variables in precipitation and temperature variable groups for 
10 sites. Models presented here include only climate variables as fixed effects. Primary climate drivers are coded on the x-axes as the climate 
variable abbreviation followed by the range of months (p, previous year; c, current year) over which it is most influential. PPT, precipitation; 
PDF, precipitation day frequency; PET, potential evapotranspiration. For each species (color-coded as in Figure 6), relationships are plotted if 
included in the top model. For each relationship shown, other terms in the model are held constant at their medians. Best-fit polynomials are 
plotted with solid lines when both first- and second-order terms are significant (t-test's p-value <.05), dash-dotted lines when only one term 
is significant, and dotted lines when neither is significant. Transparent ribbons indicate 95% confidence intervals. Vertical grey lines indicate 
the long-term mean for the climate driver over the analysis period; shading indicates 1 SD [Colour figure can be viewed at wileyonlinelibrary.
com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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3.3.2  |  Climate responses

Analyses of species-specific responses at each site used the GLS 
model to test for first- and negative second- order linear effects of 
both a precipitation and a temperature variable. Both a precipitation 
and a temperature variable were included in the top model for 78% 
(n = 36 of 46) of site–species combinations (Figure 4). There were 
seven site–species combinations for which only a precipitation term 
was significant (two at BCNM, three at SCBI, and two at LDW), two 
for which only a temperature term was significant (Chukrasia tabula-
ris A. Juss. at HKK and Betula papyrifera Marshall at NIO), and none 
with no significant climatic effects on RW. Below, we summarize the 
precipitation and temperature variables included in these models 
and their direction of response.

Responses to precipitation amount (PPT) and frequency (PDF) 
were included in the best model for all but two species–site com-
binations, and were predominantly positive (Table 1, Figure 4). 
Specifically, there were positive first-order linear terms for precip-
itation for all but one species–site combination (Tsuga canadensis (L.) 
Carrière at HF; Figure 4). Negative second-order terms were com-
monly included in the best model (32 of 42 with positive first-order 
terms), generally resulting in a deceleration or decline at the highest 
levels of precipitation, but occasionally producing a unimodal (e.g., 
several species at SCBI) or predominantly negative response (e.g., 
Betula alleghaniensis Britton at HF; Figure 4).

A temperature variable was included in the best model for all 
but eight site–species combinations, with predominantly negative 
responses, particularly at the higher end of the temperature range 
(81%; 34% with negative first-order term, 47% with positive first-
order term but negative second-order term; Figure 4). Within the 
tropics, there was minimal effect of temperature at BCNM and 
a negative effect of wet season Tmax for three of four species at 
HKK. For temperate sites with the most influential seasonal win-
dows covering the current and/or past growing season, responses 
were universally negative (i.e., negative first-order linear or uni-
modal, peaking at temperatures lower than the long-term mean). 
In contrast, there were positive effects of Jan-March Tmax for all 
three species at ZOF and of March PET for T. canadensis at HF, the 
latter contrasting with a negative response of the three deciduous 
species analyzed at HF (Figure 4). At the highest-latitude site (SC), 
which has undergone rapid warming and permafrost melt, Picea 
mariana (Mill.) Britton, Sterns & Poggenb. responded positively 
(but with wide 95% CI on the slope) to temperature over the full 
analysis period (1903–2013); however, responses were predom-
inantly positive prior to 1970 and predominantly negative after-
wards (Figure S14).

3.3.3  |  Variation in climate sensitivity with diameter 
at breast height

Interactive effects of climate and DBH were found for 91 of the 
203 (45%) species-site-variable (RW, BAI, or ΔDBH) combinations 

for which they were tested. For precipitation variables, interac-
tions were significant for 16 of the 36 (44%) interactions with RW 
as the growth metric (Figure S15) and for 17 of the 36 (47%) with 
BAI as the growth metric. The majority of these interactions were 
positive (75% for RW; 65% for BAI), indicating that larger trees 
generally respond more positively to precipitation or its frequency 
(Figure 5). Among the exceptions to this pattern (n = 4 for RW, 6 
for BAI), only a minority (n = 1 for RW, 4 for BAI) occurred in spe-
cies responding positively to precipitation in the current growing 
season.

Temperature variable ×DBH interactions were significant for 
38% of cases with RW as the growth metric (Figure S15) and for 
50% with BAI as the growth metric. Directions of these interac-
tions were mixed, with 5 of 12 significant interactions negative 
with RW as the growth metric and 10 of 16 significant interactions 
negative when BAI was the growth metric. For both RW and BAI, 
the majority of significant negative interactions (i.e., more nega-
tive/ less positive response of larger trees to higher temperatures) 
occurred in cases where the main effect temperature was negative 
(e.g., HKK, LT, CB; Figure 5), whereas positive interactions were 
more common when the main effect of temperature was positive 
(e.g., HF, ZOF).

3.4  | Variation with diameter at breast height

Growth rate—whether measured as RW, BAI, or ΔAGB—varied 
with DBH for most species at all sites (Figure 6). Because the ef-
fects of calendar year could not be evaluated for all species 
(Figure 3), the DBH trends described here refer to models without 
year. Relationships between population-mean growth rate and DBH 
were best described by models with second-order terms for the ma-
jority of site–species combinations (81–98% depending on growth 
metric; Figure 6).

For RW, DBH was included in the best model for 81% of 
species–site combinations (n = 35 of 43), and the majority of best 
models also included a significant second-order term (n  =  26, 21 
of which were negative). There was substantial variation in these 
trends, with patterns mixed across both forests and species within 
a single stand (Figure 6). On one end of the spectrum, some species 
exhibited maximum RW at low DBH, followed by fairly rapid de-
clines in RW with increasing DBH. This pattern was common among 
light-demanding species (6 of 13 site–species combinations; Table 1, 
S2; e.g., Melia azedarach L. at HKK, Populous tremuloides Michx. at 
CB) and in relatively open stands (e.g., both species at LT, P. mariana 
at SC; Figure 6). At the other end of the spectrum, some species 
had low RW at small DBH, increased to peak RW at intermediate 
DBH, and subsequently declined. This pattern was common among 
shade-tolerant species (8 of 11 site–species combinations; Table 1; 
e.g., Trichilia tuberculata and Tetragastris panamensis at BCNM; Fagus 
spp. at SCBI and ZOF, Picea spp. at ZOF and CB; Table S2), and uni-
versal for shade-tolerant species in models accounting for calendar 
year (Figure 3).
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Trends in both BAI and ΔAGB were far more consistent across 
sites and species, typically increasing to a peak at intermediate DBH 
and then declining (Table 1, Figure 6). Best models for BAI included 
DBH and DBH2 for 42 of 43 species (exception: Acer rubrum L. at HF), 
with a positive coefficient for DBH in 40 (exceptions: non-significant 
negative coefficients for Pinus ponderosa P. Lawson & C. Lawson at LT 
and Pinus longaeva D.K. Bailey at CB, whose reconstructed DBHs did 
not extend down to 0 cm within the time frame analyzed) and near-
universally negative coefficients for DBH2 (exception: P. longaeva at 

CB). For Δ AGB, models were even more consistent, with the best 
models for 98% of species containing a positive coefficient for DBH 
and a negative coefficient for DBH2 (exception: P. longaeva at CB).

3.5  |  Effects of year

There was a significant effect of year in the GLS models for 31–32 
(depending on growth metric) of the 37  species–site combinations 

F IGURE  5 Examples of climate–diameter at breast height (DBH) interactions for three tree species at three sites. Shown are modeled 
response functions at the minimum and maximum and maximum tails of the DBH distribution. Other terms in the model are held constant at 
their medians. Transparent ribbons indicate 95% confidence intervals. Vertical gray lines indicate the long-term mean for the climate driver 
over the analysis period; shading indicates 1 SD. PPT, precipitation; PDF, precipitation day frequency; PET, potential evapotranspiration. 
Species authorities are given in Table S2 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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tested (Figure 7; Figure S16). In 90–91% of cases (depending on 
growth metric), the growth trend over time was negative. Declines 
were particularly prevalent in secondary or disturbed forests, oc-
curring in 92% of species–site combinations (100% of all species 
with significant year effects) at the seven disturbed sites (Table 1, 
Figure 7). In older forests (ZOF, LT, CB), growth trends were mixed 
(Table 1, Figure 7, Figure S16). Significant positive growth trends were 
observed for only three species (consistently across all three growth 

metrics), Fagus sylvatica L. at ZOF, Picea pungens Engelm. and Pinus 
flexilis E. James at CB, and all were modest compared with the steep 
negative trends observed for some species. Growth rate was consist-
ently independent of year for only four species: C. tabularis A. Juss. at 
HKK, Pinus strobiformis Engelm. at LT, and Picea engelmannii Engelm. 
and P. longaeva at CB.

Effects of year and DBH interacted such that inclusion of year 
in models altered the shape of DBH responses, typically resulting 

F IGURE  6 Growth sensitivity to diameter at breast height (DBH): (a) ring width (RW), (b) basal area increment (BAI), (c) Δ aboveground 
biomass (ΔAGB). Models presented here include climate variables and DBH as fixed effects. Relationships for tree species in 10 sites (Table 2) 
are plotted when included in the top model. Other terms in the model are held constant at their medians. Best-fit polynomials are plotted with 
solid lines when both first- and second-order terms are significant (t-test's p-value <.05), dash-dotted lines when only one term is significant, 
and dotted lines when neither is significant. Transparent ribbons indicate 95% confidence intervals. Species authorities are given in Table S2 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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in less pronounced growth declines with increasing DBH (Figure 3; 
Figure S11 and S12).

4  | DISCUSSION

The long-term growth records contained in tree rings provide an 
exceptional tool for understanding past drivers of growth and 

anticipating future forest changes, yet traditional dendrochrono-
logical analysis methods were not designed to disentangle multiple, 
simultaneously acting drivers of tree growth, nor their implications 
for whole-forest productivity. Our novel method provides a power-
ful approach to elucidate how tree growth is simultaneously shaped 
by climate, tree size, slowly changing environmental conditions, and 
their interactions. Analyzed with respect to each of these drivers 
individually, our method yields results that are consistent with what 

F IGURE  7 Effect of year, when included in the best model, on basal area increment. Models presented here include climate variables, 
reconstructed diameter at breast height, and year as fixed effects for 10 sites (Table 2). For each tree species (all listed), relationships are 
plotted if the year effect could be analyzed and was included in the top model. Other terms in the model are held constant at their medians. 
Best-fit polynomials are plotted with solid lines when both first- and second-order terms are significant (t-test's p-value <.05), dash-dotted 
lines when only one term is significant, and dotted lines when neither is significant. Transparent ribbons indicate 95% confidence intervals. 
Species authorities are given in Table S2 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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would be obtained using established methods. Beyond this, because 
our approach considers these factors simultaneously, it allows analy-
ses of their joint and interactive effects. Applied across a wide range 
of forest types and species distributed globally across 10 sites, we 
have shown that tree species vary in the shapes of their functional 
responses with respect to size-related sensitivity to different climate 
variables. Dissecting these species-specific long-term responses is 
essential to understanding the drivers of variability and directional 
changes in tree growth over the past century and to predicting 
changes in forest composition and function in the future.

4.1  |  Climate sensitivity

Across diverse climates and forest types (Table 2), growth rates of 
40 tree species usually responded positively to water availability 
(PPT or PDF)—at least up until the long-term mean—and negatively 
to temperature (usually Tmax or PET), with the exception of several 
positive responses at times and in places where temperature was 
limiting (Table 1, Figures 3 and 4). These findings are generally con-
sistent with current understanding of global-scale patterns in cli-
mate sensitivity (Babst et al., 2019; Rozendaal & Zuidema, 2011): 
outside of the wet tropics (where there are few tree-ring records), 
the majority of forests are moisture limited and respond negatively 
to temperature, with a shrinking area of temperature-limited for-
ests in cold, humid regions (with SC falling near the transition zone). 
Within warmer regions, warm winter or early spring temperatures 
in humid climates may advance the growing season (Keenan et al., 
2014) and increase annual growth (Babst et al., 2019; Tumajer et al., 
2017), as we show for all three species at ZOF and one species at 
HF (Figure 4). However, the predominantly negative temperature 
responses (Figure 4) imply that warmer temperatures are likely to 
reduce growth across the wide range of forest types and climates 
represented here. The primary mechanism underlying growth de-
creases at high temperatures is presumably increased evaporative 
demand (PET or vapor pressure deficit, VPD) and ensuant exacer-
bation of observed water limitations (Humphrey et al., 2021; López 
et al., 2021; Novick et al., 2016). This effect occurs in addition to 
the effects of precipitation (Figure 4), highlighting the fact that tem-
perature and associated VPD increases limit growth even under con-
ditions of high soil moisture (Novick et al., 2016), and occurs over 
shorter time-frames (usually ≤3 mo) than the effects of precipitation 
(usually ≥3 mo.; Table 1, Figure 4). This suggests that relatively short 
periods of anomalously high temperatures and evaporative demand, 
themselves caused in large part by soil dryness (Humphrey et al., 
2021), add to effects of prolonged periods of reduced precipitation 
to shape forest drought responses.

Our analysis differed fundamentally from most conventional 
approaches in testing for nonlinear responses of growth to cli-
mate, finding that the majority of climate responses were nonlinear 
(Table 1, Figure 4). This result, which is consistent with physiolog-
ical expectations (e.g., Kumarathunge et al., 2019; Wilmking et al., 
2020), indicates that the majority of tree-ring records examined here 

cover climate variation beyond the range over which the response 
is approximately linear. The nonlinear form of most climate growth 
responses implies that as the climate changes such that high tem-
peratures and strong precipitation anomalies become more common 
(IPCC, 2021), nonstationary climate responses, already common 
(Wilmking et al., 2020), could become more prevalent (Germain & 
Lutz, 2020).

We found that interactions between climate drivers and DBH 
were common (45% of total cases analyzed; Table 1, Figure 5; Figure 
S15). The most coherent pattern observed in this analysis was a ten-
dency for larger trees to be more sensitive to precipitation and high 
temperatures (Figure 5), consistent with widespread observations 
that larger trees are more sensitive to drought (e.g., Bennett et al., 
2015; Gillerot et al., 2020; Hacket-Pain et al., 2016; McGregor et al., 
2021; Pretzsch et al., 2018). An analytical structure such as ours that 
can account for this pattern and other DBH–climate interactions 
(e.g. Rollinson et al., 2021; Rossi et al., 2007) will be critical to using 
tree-ring records to understand and forecast the effects of climate 
on tree growth and forest productivity.

4.2  | Variation with diameter at breast height

There was substantial variation across species–site combinations 
in the population mean relationship between DBH and growth rate 
(Figure 6). Variation was most pronounced when RW was considered 
as the growth metric, as would be expected based on basic geomet-
ric principles given that RW patterns are most variable at small DBH. 
This variation was driven by two primary, interrelated factors: spe-
cies ecology and stand history. As hypothesized, on average RW de-
clined with DBH for nearly half of light-demanding species, but most 
commonly RW initially increased across the lower end of the DBH 
range for shade-tolerant species (Table 1), particularly when the ef-
fects of calendar year were accounted for in the model (Figure 3). 
However, species shade tolerance alone did not explain variation in 
RW–DBH relationships; rather, we observed instances where, on av-
erage, RW declined with DBH for a shade-tolerant species growing 
in a relatively open stand (P. mariana at SC) or initially increased with 
DBH for shade-intolerant species growing at sites where competi-
tion for light was likely more intense (e.g., Afzelia xylocarpa (Kurz) 
Craib at HKK, Liriodendron tulipifera L. at LDW). These results imply 
that while species that typically grow in high-light conditions com-
monly display dendrochronology's “textbook” pattern of declining 
RW with DBH—in part attributable to the geometric constraint 
that new growth is spread around an ever-growing circumference 
(Biondi & Qeadan, 2008; Fritts, 1976)—the majority of trees within 
forest settings exhibit hump-shaped patterns of RW in relation to 
DBH. This latter pattern is consistent with the observation that 
when contemporary growth rates are compared across individuals 
within a closed-canopy stand (e.g., a “cross-sectional” analysis of 
census data), average RW increases continuously across most of the 
DBH range (e.g., Anderson-Teixeira, McGarvey, et al., 2015; Muller-
Landau et al., 2006), or increases and subsequently decreases 
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(Schelhaas et al., 2018). Our finding that on average across popula-
tions, BAI and ΔAGB generally saturate or decline with increasing 
DBH (Table 1, Figure 6) contrasts with findings of cross-sectional 
analyses of forest census data showing that mean ΔAGB increases 
continuously with DBH (Meakem et al., 2018; Stephenson et al., 
2014). In large part, this discrepancy can be explained by differences 
between cross-sectional analyses and “longitudinal” patterns of in-
dividual trees through time (Forrester, 2021; Sheil et al., 2017), con-
sistent with the principle that individual-scale growth patterns and 
environmental responses do not necessarily match population- or 
stand-level average responses (Clark et al., 2003, 2011). Declines in 
BAI and ΔAGB at larger DBH may be in part attributable to increas-
ing carbon allocation to functions other than woody growth, such as 
reproduction (Thomas, 2011), and possibly to physiological declines 
as trees age (Forrester, 2021; Qiu et al., 2021). Apparent declines in 
ΔAGB at large DBH (or old age) may also be driven by shifts towards 
proportionally greater wood production within the crown (e.g., 
branch production, Sillett et al., 2010, 2021) that are not adequately 
captured by biomass allometries based on DBH and sometimes 
height (Disney et al., 2020; Goodman et al., 2014). Growth declines 
may also be linked to slowly changing environmental conditions (e.g., 
successional changes in stand structure, climate change). Notably, 
inclusion of year in the GLS models reduced the frequency of RW 
declines with DBH (Figure 3) and tended to reduce the magnitude 
of BAI and ΔAGB declines at larger DBH (Figures S11 and S12), sug-
gesting that some of the growth declines at large DBH (Figure 6) are 
more properly attributed to recent environmental changes than to 
large DBH.

4.3  |  Changing growth rates

Our analytical framework reconstructs growth changes in a sampled 
tree population over time while accounting for climate, DBH, and 
persistent growth differences among individuals (Figure 1), thereby 
addressing some important challenges to obtaining unbiased esti-
mates of growth trends attributable to non-climatic environmental 
drivers. First, we account for changes in climate that may drive direc-
tional growth trends. For example, dramatic growth declines at LT, 
driven by a strong regional warming and drying trend (Touchan et al., 
2011; Williams et al., 2013), are in part factored out by accounting 
for the primary climate drivers, such that a significant decline over 
time was detected for only one of the two species (Figure 7). Second, 
we show that growth rate—by any metric—varies nonlinearly with 
DBH and with patterns dependent upon the species and environ-
mental context (Figure 6), reinforcing the concept that growth 
trend analyses should incorporate cross-sectional analyses to cor-
rect for growth ontogeny (e.g., through regional curve standardiza-
tion, Peters et al., 2015). Our method does this, differing from the 
conceptually parallel method of regional curve standardization in 
that we standardize relative to DBH rather than age, correct for 
any trends in the most influential climate drivers, and include ran-
dom effects of tree to account for persistent growth differences 

among individuals. The latter addresses a third important challenge, 
as those growth differences among individuals can bias estimated 
growth trends in positive or negative directions (Brienen et al., 2012, 
2017; Groenendijk et al., 2015; Nehrbass-Ahles et al., 2014; van 
der Sleen et al., 2017). For instance, older trees, which provide the 
only records available for the earliest decades, may be competitive 
winners that had above-average growth rates within their cohorts 
(Aubry-Kientz et al., 2015), which would upwardly bias average 
growth rate estimates for early decades (“juvenile selection effect,” 
Groenendijk et al., 2015). In contrast, the oldest age classes being 
dominated by trees with below-average growth rates (e.g., Piovesan 
et al., 2019) could downwardly bias average growth rate estimates 
for early decades (“a slow-grower survivorship bias,” Brienen et al., 
2012; Duchesne et al., 2019). By including a random effect of tree, 
our approach likely reduces the most severe potential biases associ-
ated with persistent growth differences across individuals (Bowman 
et al., 2013; Brienen et al., 2012, 2017), yet observed trends never-
theless represent only the sampled population of trees, as opposed 
to tree populations at all points throughout the time frame analyzed. 
Within this context, signals of changing growth rate over time are 
attributable to some combination of stand dynamics (e.g., recruit-
ment and succession, changing stand structure) and environmental 
drivers (e.g., indirect effects of climate change, rising atmospheric 
CO2, deposition of SO2 and NOx).

In all seven sites dominated by trees less than 100  years old, 
population-mean growth trends were universally negative, when 
significant (Table 1, Figures 3 and 7). Although attribution of these 
trends is difficult, it is likely that some trends are caused by stand 
dynamics as cohorts and stands develop over time. Such negative 
trends are fairly typical of mixed-species stands that experience 
vertical stratification (Oliver & Larson, 1996). For species exhibit-
ing a pulse of recruitment in the past followed by little subsequent 
recruitment (e.g., A. rubrum and B. alleghaniensis at HF), persistent 
differences in growth rates among individuals could produce a trend 
of declining growth, as faster-growing individuals reach various size 
thresholds earlier (Brienen et al., 2017; see also van der Sleen et al., 
2017). Particularly in secondary stands where many of the sampled 
species recruited in pulses that were followed by low recruitment 
(e.g., SCBI, HF; Appendix S1), growth declines are consistent with 
the tendency for faster tree growth during early stand development 
(Lorimer & Frelich, 1989; Lorimer et al., 1988; Oliver & Larson, 1996), 
and with increasing competition and declining woody productiv-
ity as young stands mature (e.g., Goulden et al., 2011; Pregitzer & 
Euskirchen, 2004; West, 2020). Gradual shifts in abiotic drivers (e.g., 
indirect effects of warming) likely also play a role at some of these 
sites. At Scotty Creek, in northern Canada, rapid warming is thawing 
permafrost and altering hydrologic conditions (Baltzer et al., 2014), 
resulting in high mortality, growth declines, and low recruitment of 
P. mariana (Dearborn et al., 2020; Sniderhan & Baltzer, 2016). At this 
site, we attribute pronounced negative growth trends to a combina-
tion of successional declines and indirect climatic stress.

Within the three older forests (ZOF, LT, CB), population-mean 
growth trends were mixed (Table 1, Figures 3 and 7), probably 
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reflecting some combination of successional changes, changing 
mortality rates, and shifting competitive advantages, perhaps in 
part driven by changing environmental conditions (Furniss et al., 
2017; Vrška et al., 2009) or the lack of intermediate disturbances 
giving rise to increasing crowding (e.g., Lutz et al., 2009). In partic-
ular, light-demanding species that establish in gaps (e.g., P. tremuloi-
des Michx. at CB; Table S2) would tend to experience an increasingly 
competitive environment through time. At Zofin, size-corrected 
growth rates were lowest in the 1970s and 1980s, consistent 
with other studies from central Europe showing dramatic growth 
reductions due to acid deposition during this period (Elling et al., 
2009; Šamonil & Vrška, 2008). Nonlinear trends such as this would 
be more accurately described by a nonlinear response function to 
year, or incorporation of data on pollution, but that is beyond the 
scope of the current analysis. Notably, there were only three spe-
cies—F. sylvatica at ZOF and P. pungens and P. flexilis at CB—whose 
population-mean growth rate increased significantly over the anal-
ysis time frame (Figure 7).

The rarity of positive growth trends observed here indicates that 
any growth benefit from elevated CO2 was outweighed by some 
combination of demographic changes and chronic environmental 
shifts. This aligns with the preponderance of studies using tree rings 
to infer growth responses to rising CO2 (e.g., Girardin et al., 2016; 
Groenendijk et al., 2015; Hararuk et al., 2019; Walker et al., 2021), in-
cluding previous analyses from HKK (Groenendijk et al., 2015; Nock 
et al., 2011; van der Sleen et al., 2015, 2017), although some studies 
have detected growth increases (e.g., Hember et al., 2019; Voelker 
et al., 2006). A growth benefit of increasing atmospheric CO2 con-
centration is expected, based on physiological mechanisms, under 
water-limited conditions and has been observed in young forests 
in experimental settings (Walker et al., 2021). However, significant 
woody growth stimulation by elevated CO2 has not been observed 
in experimentally manipulated mature forests (Walker et al., 2021), 
and increasing CO2 does not appear to be a dominant growth driver 
for the trees in natural forest settings analyzed here.

5  |  CONCLUSIONS

As global change pressures intensify and the need to understand 
changing forest dynamics becomes increasingly urgent (McDowell 
et al., 2020; Thom et al., 2017), we expect that the approach pre-
sented here will prove valuable to understanding drivers of tree 
growth and forest change. Multiple elements of global change—
including changing atmospheric composition, warming, drought, 
changing disturbance regimes, and thawing permafrost—are simul-
taneously influencing forests worldwide (e.g., Anderson-Teixeira, 
Davies, et al., 2015) and are expected to interact with each other, 
differentially affecting trees of different size and species (Table 1, 
Figures 3–5). Simultaneous evaluation of multiple drivers can im-
prove analysis, understanding, and predictions of global change 
effects on tree growth and forest productivity. The method we pre-
sent and apply here allows doing so.
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