12 research outputs found

    RET PLCÎł Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration

    Get PDF
    The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCÎł) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCÎł block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCÎł binding domain Tyr1015

    N-(Phenoxyalkyl)amides as MT1 and MT2 ligands: Antioxidant properties and inhibition of Ca2+/CaM-dependent kinase II

    No full text
    Recently a series of chiral N-(phenoxyalkyl)amides have been reported as potent MT1 and MT2 melatonergic ligands. Some of these compounds were selected and tested for their antioxidant properties by measuring their reducing effect against oxidation of 20,70-dichlorodihydrofluorescein (DCFH) in the DCFHdiacetate (DCFH-DA) assay. Among the tested compounds, N-[2-(3-methoxyphenoxy)propyl]butanamide displayed potent antioxidant activity that was stereoselective, the (R)-enantiomer performing as the eutomer. This compound displayed strong cytoprotective activity against H2O2-induced cytotoxicity resulting slightly more active than melatonin, and performed as Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, too

    Design, synthesis, and cytotoxic evaluation of acyl derivatives of 3-aminonaphtho[2,3-b]thiophene-4,9-dione, a quinone-based system.

    No full text
    A series of 3-acyl derivatives of the dihydronaphtho[2,3-b]thiophen-4,9-dione system were studied with respect to cytotoxicity and topoisomerase II inhibitory activity. These analogues were designed as electron-deficient anthraquinone analogues with potential intercalation ability. Derivatives 3-(diethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11m) and 3-(2-(dimethylamino)ethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11p) showed a high efficacy in cell lines that were highly resistant to treatment with doxorubicin, such as MDA-MB435 (melanoma), IGROV (ovarian), and SF-295 (glioblastoma) human cell lines. Both compounds inhibit topoisomerase II mediated relaxation of DNA, while only 11p incites arrest at the S phase in Caco-2 cells, inducing a delay of cell cycle progression and an increase of cell differentiation. The ability of these derivatives to modulate small heat shock proteins and cardiotoxicy effects was also explored. In addition, the DNA-binding properties of these compounds were investigated and discussed
    corecore