341 research outputs found

    CRISPR medicine for blood disorders: Progress and challenges in delivery

    Get PDF
    Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods

    Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human multipotent mesenchymal stromal cells (MSC) can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity.</p> <p>Results</p> <p>After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G<sub>1 </sub>phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation.</p> <p>Conclusion</p> <p>Physiologic oxygen tension during <it>in vitro </it>culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.</p

    Arginase 1+ IL-10+ polymorphonuclear myeloid-derived suppressor cells are elevated in patients with active pemphigus and correlate with an increased Th2/Th1 response

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which are characterized by their capability to suppress T-cell responses. While MDSCs have been traditionally associated with cancer diseases, their role as regulators of autoimmune diseases is emerging. Pemphigus is a chronic autoimmune blistering skin disease characterized by dysregulated T-cell responses and autoantibody production. The role of MDSCs in pemphigus disease has not been defined yet. The aim of this study was to characterize MDSCs in pemphigus patients and to dissect their relationship with CD4(+) T-cell subsets and clinical disease assessments. For this purpose, we performed a cross-sectional analysis of 20 patients with pemphigus. Our results indicate that a population of CD66b(+)CD11b(+) polymorphonuclear-like MDSCs (PMN-MDSCs) is expanded in the peripheral blood mononuclear cell fraction of pemphigus patients compared to age-matched healthy donors. These PMN-MDSCs have the capability of suppressing allogeneic T-cell proliferation in vitro and show increased expression of characteristic effector molecules such as arginase I and interleukin-10. We further demonstrate that PMN-MDSCs are especially expanded in patients with active pemphigus, but not in patients in remission. Moreover, MDSC frequencies correlate with an increased Th2/Th1 cell ratio. In conclusion, the identification of a functional PMN-MDSC population suggests a possible role of these cells as regulators of Th cell responses in pemphigus

    NKG2D Signaling Leads to NK Cell Mediated Lysis of Childhood AML

    Get PDF
    Natural killer cells have been shown to be relevant in the recognition and lysis of acute myeloid leukemia. In childhood acute lymphoblastic leukemia, it was shown that HLA I expression and KIR receptor-ligand mismatch significantly impact ALL cytolysis. We characterized 14 different primary childhood AML blasts by flow cytometry including NKG2D ligands. Further HLA I typing of blasts was performed and HLA I on the AML blasts was quantified. In two healthy volunteer NK cell donors HLA I typing and KIR genotyping were done. Blasts with high NKG2D ligand expression had significantly higher lysis by isolated NK cells. Grouping the blasts by NKG2D ligand expression led to a significant inverse correlation of HLA I expression and cytolysis in NKG2D low blasts. Furthermore, a significant positive correlation of NKG2D ligand expression and blast cytolysis was shown. No impact of KIR ligand-ligand mismatch was found but a significantly increased lysis of homozygous C2 blasts by KIR2DL1 negative NK cells (donor B) was revealed. In conclusion, NKG2D signaling leads to NK cell mediated lysis of childhood AML despite high HLA I expression

    Long term outcome of high-risk neuroblastoma patients after immunotherapy with antibody ch14.18 or oral metronomic chemotherapy

    Get PDF
    Background: The treatment of high-risk neuroblastoma patients consists of multimodal induction therapy to achieve remission followed by consolidation therapy to prevent relapses. However, the type of consolidation therapy is still discussed controversial. We applied metronomic chemotherapy in the prospective NB90 trial and monoclonal anti-GD2-antibody (MAB) ch14.18 in the NB97 trial. Here, we present the long term outcome data of the patient cohort. Methods: A total of 334 stage 4 neuroblastoma patients one year or older were included. All patients successfully completed the induction therapy. In the NB90 trial, 99 patients received at least one cycle of the oral maintenance chemotherapy (NB90 MT, 12 alternating cycles of oral melphalan/etoposide and vincristine/cyclophosphamide). In the NB97 trial, 166 patients commenced the MAB ch14.18 consolidation therapy (six cycles over 12 months). Patients who received no maintenance therapy according to the NB90 protocol or by refusal in NB97 (n = 69) served as controls. Results: The median observation time was 11.11 years. The nine-year event-free survival rates were 41 ± 4%, 31 ± 5%, and 32 ± 6% for MAB ch14.18, NB90 MT, and no consolidation, respectively (p = 0.098). In contrast to earlier reports, MAB ch14.18 treatment improved the long-term outcome compared to no additional therapy (p = 0.038). The overall survival was better in the MAB ch14.18-treated group (9-y-OS 46 ± 4%) compared to NB90 MT (34 ± 5%, p = 0.026) and to no consolidation (35 ± 6%, p = 0.019). Multivariable Cox regression analysis revealed ch14.18 consolidation to improve outcome compared to no consolidation, however, no difference between NB90 MT and MAB ch14.18-treated patients was found. Conclusions: Follow-up analysis of the patient cohort indicated that immunotherapy with MAB ch14.18 may prevent late relapses. Finally, metronomic oral maintenance chemotherapy also appeared effective

    Total and Active Rabbit Antithymocyte Globulin (rATG;Thymoglobulin®) Pharmacokinetics in Pediatric Patients Undergoing Unrelated Donor Bone Marrow Transplantation

    Get PDF
    AbstractRabbit antithymocyte globulin (rATG; Thymoglobulin®) is currently used to prevent or treat graft-versus-host disease (GVHD) during hematopoietic stem cell transplantation (HSCT). The dose and schedule of rATG as part of the preparative regimen for unrelated donor (URD) bone marrow transplantation (BMT) have not been optimized in pediatric patients. We conducted a prospective study of 13 pediatric patients with hematologic malignancies undergoing URD BMT at St. Jude Children's Research Hospital from October 2003 to March 2005, to determine the pharmacokinetics and toxicities of active and total rATG. The conditioning regimen comprised total body irradiation (TBI), thiotepa, and cyclophosphamide (Cy); cyclosporine (CsA) and methotrexate (MTX) were administered as GVHD prophylaxis. Patients received a total dose of 10 mg/kg rATG, and serial blood samples were assayed for total rATG by enzyme linked immunosorbent assay (ELISA) and active rATG by florescein activated cell sorting (FACS). We found that our weight-based dosing regimen for rATG was effective and well tolerated by patients. The half-lives of total and active rATG were comparable to those from previous studies, and despite high doses our patients had low maximum concentrations of active and total rATG. There were no occurrences of grade iii-iv GVHD even in patients having low peak rATG levels, and the overall incidence of grade II GVHD was only 15%. None of the patients had serious infections following transplantation. These data support the use of a 10 mg/kg dose of rATG in children with hematologic malignancies because it can be administered without increasing the risk of graft rejection, or serious infection in pediatric patients with a low rate of GVHD. These conclusions may not apply to patients with nonmalignant disorders

    Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis

    Full text link
    The safety and efficacy of blinatumomab, a CD3/CD19-directed bispecific molecule, were examined in an open-label, single-arm, expanded access study (RIALTO). Children (>28 days and <18 years) with CD19+ relapsed/refractory B-cell precursor acute lymphoblastic leukemia (R/R B-ALL) received up to 5 cycles of blinatumomab by continuous infusion (cycle: 4 weeks on/2 weeks off). The primary end point was incidence of adverse events. Secondary end points included complete response (CR) and measurable residual disease (MRD) response within the first 2 cycles and relapse-free survival (RFS), overall survival (OS), and allogeneic hematopoietic stem cell transplant (alloHSCT) after treatment. At final data cutoff (10 January 2020), 110 patients were enrolled (median age, 8.5 years; 88% had ≥5% baseline blasts). A low incidence of grade 3 or 4 cytokine release syndrome (n = 2; 1.8%) and neurologic events (n = 4; 3.6%) was reported; no blinatumomab-related fatal adverse events were recorded. The probability of response was not affected by the presence of cytogenetic/molecular abnormalities. Median OS was 14.6 months (95% confidence interval [CI]: 11.0-not estimable) and was significantly better for MRD responders vs MRD nonresponders (not estimable vs 9.3; hazard ratio, 0.18; 95% CI: 0.08-0.39). Of patients achieving CR after 2 cycles, 73.5% (95% CI: 61.4%-83.5%) proceeded to alloHSCT. One-year OS probability was higher for patients who received alloHSCT vs without alloHSCT after blinatumomab (87% vs 29%). These findings support the use of blinatumomab as a safe and efficacious treatment of pediatric R/R B-ALL. This trial was registered at www.clinicaltrials.gov as #NCT02187354

    Haploidentical hematopoietic stem cell transplantation as individual treatment option in pediatric patients with very high-risk sarcomas

    Get PDF
    Background Prognosis of children with primary disseminated or metastatic relapsed sarcomas remains dismal despite intensification of conventional therapies including high-dose chemotherapy. Since haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is effective in the treatment of hematological malignancies by mediating a graft versus leukemia effect, we evaluated this approach in pediatric sarcomas as well. Methods Patients with bone Ewing sarcoma or soft tissue sarcoma who received haplo-HSCT as part of clinical trials using CD3+ or TCRα/β+ and CD19+ depletion respectively were evaluated regarding feasibility of treatment and survival. Results We identified 15 patients with primary disseminated disease and 14 with metastatic relapse who were transplanted from a haploidentical donor to improve prognosis. Three-year event-free survival (EFS) was 18,1% and predominantly determined by disease relapse. Survival depended on response to pre-transplant therapy (3y-EFS of patients in complete or very good partial response: 36,4%). However, no patient with metastatic relapse could be rescued. Conclusion Haplo-HSCT for consolidation after conventional therapy seems to be of interest for some, but not for the majority of patients with high-risk pediatric sarcomas. Evaluation of its future use as basis for subsequent humoral or cellular immunotherapies is necessary
    corecore