189 research outputs found

    Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector

    Get PDF
    Mesenchymal stromal cells (MSCs) hold great promise for regenerative medicine. Stable ex vivo gene transfer to MSCs could improve the outcome and scope of MSC therapy, but current vectors require multiple rounds of transduction, involve genotoxic viral promoters and/or the addition of cytotoxic cationic polymers in order to achieve efficient transduction. We describe a self-inactivating foamy virus vector (FVV), incorporating the simian macaque foamy virus envelope and using physiological promoters, which efficiently transduces murine MSCs (mMSCs) in a single-round. High and sustained expression of the transgene, whether GFP or the lysosomal enzyme, arylsulphatase A (ARSA), was achieved. Defining MSC characteristics (surface marker expression and differentiation potential), as well as long-term engraftment and distribution in the murine brain following intracerebroventricular delivery, are unaffected by FVV transduction. Similarly, greater than 95% of human MSCs (hMSCs) were stably transduced using the same vector, facilitating human application. This work describes the best stable gene transfer vector available for mMSCs and hMSCs

    Transcriptional Profiling of Endocrine Cerebro-Osteodysplasia Using Microarray and Next-Generation Sequencing

    Get PDF
    BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq) of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, we used gene ontology (GO) to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively). Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation

    Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport.

    Get PDF
    A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4\u27-diisothiocyanatostilbene-2,2\u27-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT

    MELAS: A multigenerational impact of the MTTL1 A3243G MELAS mutation

    Get PDF
    Background: the maternally inherited MTTL1 A3243G mutation in the mitochondrial genome causes MelaS (Mitochondrial encephalopathy lactic acidosis with Stroke-like episodes), a condition that is multisystemic but affects primarily the nervous system. Significant intra-familial variation in phenotype and severity of disease is well recognized. Methods: retrospective and ongoing study of an extended family carrying the MTTL1 A3243G mutation with multiple symptomatic individuals. tissue heteroplasmy is reviewed based on the clinical presentations, imaging studies, laboratory findings in affected individuals and pathological material obtained at autopsy in two of the family members. Results: there were seven affected individuals out of thirteen members in this three generation family who each carried the MTTL1 A3243G mutation. the clinical presentations were varied with symptoms ranging from hearing loss, migraines, dementia, seizures, diabetes, visual manifestations, and stroke like episodes. three of the family members are deceased from MelaS or to complications related to MelaS. Conclusions: the results of the clinical, pathological and radiological findings in this family provide strong support to the current concepts of maternal inheritance, tissue heteroplasmy and molecular pathogenesis in MelaS. neurologists (both adult and paediatric) are the most likely to encounter patients with MelaS in their practice. genetic counselling is complex in view of maternal inheritance and heteroplasmy. newer therapeutic options such as arginine are being used for acute and preventative management of stroke like episodes. © 2014 Canadian Journal of neurologiCal sciences inc

    End-cap Group Engineering of a Small Molecule Non-Fullerene Acceptor: The Influence of Benzothiophene Dioxide

    Get PDF
    In this study, a sulfonyl-containing end-capping moiety, benzothiophene dioxide, was selected to prepare the nonfullerene acceptor ITBC. ITBC has an acceptor-donor-acceptor (A-D-A) structure, with indacenodithieno[3,2-b]thiophene (IDTT) as the electron-rich core moiety. The strong electron-withdrawing sulfonyl acceptor units leads to extended UV-vis absorption into the near-IR region and relatively low frontier molecular orbital energy levels (LUMO/HOMO: -4.13 eV/-5.61 eV) with a narrow bandgap of 1.48 eV. These values compare favorably to the well-studied small molecule acceptor 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile end-capped indacenodithieno[3,2-b]thiophene (ITIC). A power conversion efficiency of 4.17% was achieved by fabricating organic solar cells with the fluorinated conjugated polymer FTAZ as the donor and ITBC as the acceptor. These results indicate that benzothiophene dioxide is a novel electron-withdrawing end-capping unit for ITBC, and can be used as an electron acceptor for organic solar cells

    Clinical Next-Generation Sequencing Pipeline Outperforms a Combined Approach Using Sanger Sequencing and Multiplex Ligation-Dependent Probe Amplification in Targeted Gene Panel Analysis

    Get PDF
    Advances in next-generation sequencing (NGS) have facilitated parallel analysis of multiple genes enabling the implementation of cost-effective, rapid, and high-throughput methods for the molecular diagnosis of multiple genetic conditions, including the identification of BRCA1 and BRCA2 mutations in high-risk patients for hereditary breast and ovarian cancer. We clinically validated a NGS pipeline designed to replace Sanger sequencing and multiplex ligation-dependent probe amplification analysis and to facilitate detection of sequence and copy number alterations in a single test focusing on a BRCA1/BRCA2 gene analysis panel. Our custom capture library covers 46 exons, including BRCA1 exons 2, 3, and 5 to 24 and BRCA2 exons 2 to 27, with 20 nucleotides of intronic regions both 5′ and 3′ of each exon. We analyzed 402 retrospective patients, with previous Sanger sequencing and multiplex ligation-dependent probe amplification results, and 240 clinical prospective patients. One-hundred eighty-three unique variants, including sequence and copy number variants, were detected in the retrospective (n = 95) and prospective (n = 88) cohorts. This standardized NGS pipeline demonstrated 100% sensitivity and 100% specificity, uniformity, and high-depth nucleotide coverage per sample (approximately 7000 reads per nucleotide). Subsequently, the NGS pipeline was applied to the analysis of larger gene panels, which have shown similar uniformity, sample-to-sample reproducibility in coverage distribution, and sensitivity and specificity for detection of sequence and copy number variants

    Phosphorylation State-Dependent High Throughput Screening of the c-Met Kinase

    Get PDF
    High-throughput screening (HTS) of ~50,000 chemical compounds against phosphorylated and unphosphorylated c-Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), was carried out in order to compare hit rates, hit potencies and also to explore scaffolds that might serve as potential leads targeting only the unphosphorylated form of the enzyme. The hit rate and potency for the confirmed hit molecules were higher for the unphosphoryalted form of c-Met. While the target of small molecule inhibitor discovery efforts has traditionally been the phosphorylated form, there are now examples of small molecules that target unphosphorylated kinases. Screening for inhibitors of unphosphorylated kinases may represent a complementary approach for prioritizing chemical scaffolds for hit-to-lead follow ups

    Ambroxol as a novel disease-modifying treatment for Parkinson\u27s disease dementia: Protocol for a single-centre, randomized, double-blind, placebo-controlled trial

    Get PDF
    © 2019 The Author(s). Background: Currently there are no disease-modifying treatments for Parkinson\u27s disease dementia (PDD), a condition linked to aggregation of the protein α-synuclein in subcortical and cortical brain areas. One of the leading genetic risk factors for Parkinson\u27s disease is being a carrier in the gene for β-Glucocerebrosidase (GCase; gene name GBA1). Studies in cell culture and animal models have shown that raising the levels of GCase can decrease levels of α-synuclein. Ambroxol is a pharmacological chaperone for GCase and is able to raise the levels of GCase and could therefore be a disease-modifying treatment for PDD. The aims of this trial are to determine if Ambroxol is safe and well-tolerated by individuals with PDD and if Ambroxol affects cognitive, biochemical, and neuroimaging measures. Methods: This is a phase II, single-centre, double-blind, randomized placebo-controlled trial involving 75 individuals with mild to moderate PDD. Participants will be randomized into Ambroxol high-dose (1050 mg/day), low-dose (525 mg/day), or placebo treatment arms. Assessments will be undertaken at baseline, 6-months, and 12-months follow up times. Primary outcome measures will be the Alzheimer\u27s disease Assessment Scale-cognitive subscale (ADAS-Cog) and the ADCS Clinician\u27s Global Impression of Change (CGIC). Secondary measures will include the Parkinson\u27s disease Cognitive Rating Scale, Clinical Dementia Rating, Trail Making Test, Stroop Test, Unified Parkinson\u27s disease Rating Scale, Purdue Pegboard, Timed Up and Go, and gait kinematics. Markers of neurodegeneration will include MRI and CSF measures. Pharmacokinetics and pharmacodynamics of Ambroxol will be examined through plasma levels during dose titration phase and evaluation of GCase activity in lymphocytes. Discussion: If found effective and safe, Ambroxol will be one of the first disease-modifying treatments for PDD. Trial registration: ClinicalTrials.gov NCT02914366, 26 Sep 2016/retrospectively registered
    • …
    corecore