487 research outputs found

    Sun-Child

    Get PDF

    (Untitled Verse)

    Get PDF

    Raccoons at the Cats\u27 Food

    Get PDF

    The Role of Host Demographic Storage in the Ecological Dynamics of Heritable Symbionts

    Get PDF
    Heritable symbioses are widespread and ecologically important. Many host organisms have complex life cycles that include diverse opportunities for symbionts to affect their host and be lost during development. Yet, existing theory takes a simplified view of host demography. Here, we generalize symbiosis theory to understand how demographic “storage” in the form of dormant or prereproductive life stages can modify symbiosis dynamics. Using grass-endophyte symbioses as context, we developed models to contrast the role of the seed bank (a storage stage) against the reproductive stage in symbiont persistence and prevalence. We find that the seed bank is as important as or more important than the reproductive stage in driving symbiont dynamics, as long as passage through the seed bank is obligate. Flexible entry to the seed bank substantially weakens its influence on symbiont persistence but can modify prevalence in counterintuitive ways. Our models identify a role for legacy effects, where hosts that lose symbionts retain their demographic influence. The retention of benefits via legacy effects can reduce symbiont prevalence and even cause prevalence to decline with increasing benefits to hosts because symbiont-free hosts carry those benefits. Our results resolve connections between individual-level host-symbiont interactions and population-level patterns, providing guidance for empirical studies

    Mammalian herbivores restrict the altitudinal range limits of alpine plants.

    Get PDF
    Although rarely experimentally tested, biotic interactions have long been hypothesised to limit low-elevation range boundaries of species. We tested the effects of herbivory on three alpine-restricted plant species by transplanting plants below (novel), at the edge (limit), or in the centre (core) of their current elevational range and factorially fencing-out above- and belowground mammals. Herbivore damage was greater in range limit and novel habitats than in range cores. Exclosures increased plant biomass and reproduction more in novel habitats than in range cores, suggesting demographic costs of novel interactions with herbivores. We then used demographic models to project population growth rates, which increased 5–20% more under herbivore exclosure at range limit and novel sites than in core habitats. Our results identify mammalian herbivores as key drivers of the low-elevation range limits of alpine plants and indicate that upward encroachment of herbivores could trigger local extinctions by depressing plant population growth.publishedVersio

    Fungal Symbionts as Manipulators of Plant Reproductive Biology

    Get PDF
    Symbioses have shaped the evolution of life, most notably through the fixation of heritable symbionts into organelles. The inheritance of symbionts promotes mutualism and fixation by coupling partner fitness. However, conflicts arise if symbionts are transmitted through only one sex and can shift host resources toward the sex through which they propagate. Such reproductive manipulators have been documented in animals with separate sexes but not in other phyla or sexual systems. Here we investigated whether the investment in male relative to female reproduction differed between hermaphroditic host plants with versus without a maternally inherited fungal symbiont. Plants with the fungus produced more seeds and less pollen than plants lacking the fungus, resulting in an ∼40% shift in functional gender and a switch from male-biased to female-biased sex allocation. Given the ubiquity of endophytes in plants, reproductive manipulators of hermaphrodites may be widespread in nature

    KING OF THE HILL? HOW BIOTIC INTERACTIONS AFFECT BIOGEOGRAPHICAL PATTERN AND SPECIES RESPONSES TO CLIMATE CHANGE

    Get PDF
    As climate has warmed, many species have moved up mountains as physiological limits to their distributions have ameliorated. These distribution shifts are creating novel communities, begging the question: What happens to species at the tops of mountains as potential antagonists encroach upwards? Theory predicts that upward migrations will cause range contractions for high-elevation species because of novel interactions with encroaching antagonists. My dissertation work is one of the most comprehensive tests of this question to date, using a combination of ecological niche modeling (ENM), experiments, and demographic and trait-based modeling approaches. I created novel ENMs that suggest context-dependency of biotic interactions, where predictions of biotic interactions change from positive to negative over environmental gradients, is common over elevation gradients. Additionally, ENMs suggested the current focus on plant-plant interactions in niche modeling targets the most important biotic interaction for many species. I then constructed space-for-time experiments that transplanted alpine species into novel low elevation plant and mammal communities expected to encroach upwards, as well as into their native high elevation communities. Plant competition was manipulated by vegetation removals and mammals were excluded in a separate factorial experiment using below- and aboveground fencing. In both experiments, low elevation plant and mammal communities suppressed growth of alpine species to a greater extent than those antagonists found in their home range. However, demographic models suggested that environmental factors (e.g. temperature) other than novel plant and mammal communities are more consequential for determining population fate. The experiments validated a novel trait-based model of competitive interactions that can be broadly applied to other systems and conservation needs. My dissertation work found that alpine plants are unlikely to remain “king of the hill” under climate change, in part due to the upward encroachment of novel competitors and intensification of herbivore pressure

    Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones

    Get PDF
    Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional differences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may influence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Using passive traps, we caught bees during two-week intervals from March–October, 2002–2014. The resulting dataset included 302 bee species and 56 genera. Bee abundance, composition, and diversity differed among ecosystems, indicating that future state transitions could alter bee assemblage composition in our system. We found strong seasonal bee species turnover, suggesting that bee phenological shifts may accompany state transitions. Common species drove the observed trends, and both specialist and generalist bee species were indicators of ecosystem types or months; these species could be sentinels of community-wide responses to future shifts. Our work suggests that predicting the consequences of global change for bee assemblages requires accounting for both within-year and among-ecosystem variation
    corecore