37 research outputs found

    Strong electron-phonon coupling and phonon-induced superconductivity in tetragonal C3_3N4_4 with hole doping

    Full text link
    C3_3N4_4 is a recently discovered phase of carbon-nitrides with the tetragonal crystal structure (arXiv:2209.01968) that is stable at ambient conditions. C3_3N4_4 is a semiconductor exhibiting flat-band anomalies in the valence band, suggesting the emergence of many-body instabilities upon hole doping. Here, using state-of-the-art first-principles calculations we show that hole-doped C3_3N4_4 reveals strong electron-phonon coupling, leading to the formation of a gapped superconducting state. The phase transition temperatures turns out to be strongly dependent on the hole concentration. We propose that holes could be injected into C3_3N4_4 via boron doping which induces, according to our results, a rigid shift of the Fermi energy without significant modification of the electronic structure. Based on the electron-phonon coupling and Coulomb pseudopotential calculated from first principles, we conclude that the boron concentration of 6 atoms per nm3^3 would be required to reach the critical temperature of ∌\sim55 K at ambient pressure.Comment: 10 pages incl. Supplemental Material, 8 figure

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Design of Slag Cement, Activated by Na (K) Salts of Strong Acids, for Concrete Reinforced with Steel Fittings

    Full text link
    This paper proposes a technique to prevent the corrosion of steel reinforcement in concrete based on slag cement (SC) activated by Na(K) salts of strong acids (SSA) in the composition of by-pass cement kiln dust (BP). The technique implies using additional modifiers in the form of the Portland cement CEM I 42,5 R and the calcium-aluminate admixture (CAA) С3А∙6H2O.It is shown that adding the Portland cement contributes to enhancing the intensifying influence of BP on the SC hydration, accompanied by an increase in the strength of artificial stone. This effect is predetermined by the formation of hydrosilicates in hydration products with an increased crystallization degree in the form of CSH(I) and C2SH(A).Modifying SC with CAA ensures the intensive formation of low-soluble AFm phases in the composition of hydration products, aimed at reliable binding the SSA anions (Cl-, SO42-) that are aggressive to steel reinforcement.The study result has established the possibility to produce SC, activated by SSA, when using BP, the Portland cement, and CAA. Mathematical methods to plan the experiment were applied to produce an SC composition of "granulated blast furnace slag – BP – Portland cement – CAA", characterized by a strength class of 42.5 and a molar ratio of Cl-/OH- in a porous solution not exceeding 0.6. The resulting properties predetermine the feasibility of using SC in steel-reinforced concrete.The relevance of this work is due to the modern trends in the development of the construction industry. The introduction of cement that contains mineral additives, in particular granulated blast furnace slag, contributes to improving the environment by reducing СО2 emission. The use of such cement as a base of steel-reinforced concrete ensures the increase in their functionality and durabilit

    Comparison of Influence of Surfactants on Thermokinetic Characteristics of Alkali-activated Slag Cement

    Full text link
    Increasing the durability of concrete and reinforced concrete structures according to the criterion of crack resistance is a relevant task of construction materials science. To solve this task, this paper proposes effective solutions for adjusting thermofinite characteristics of alkali-activated slag cement (ASC) by using surfactants of various chemical nature in order to control the thermally-stressed state of concrete based on it (ASC concrete). The method of calorimetry was applied to show that the problematic issue is to adjust the structure formation of ASC by anion-active surface-active substances based on complex polyesters. This is predetermined by the instability of the molecular structure of surfactants in the hydration environment of ASC due to the destruction of complex ester bonds as a result of alkaline hydrolysis. Thermokinetic analysis has demonstrated the effectiveness of using anion-active surfactants, which do not contain ester bonds, as regulators of crack resistance of ASC concrete. Simple polyesters and multi-atom alcohols provide the ability to adjust the duration of the induction period while ensuring the required completeness of ASC hydration within a time frame. The effectiveness of cation-active surface-active substances has been shown, which are characterized by the stability of the molecular structure in the hydration environment of ASC and an increased level of adsorbing capacity. The decrease in the effectiveness of surface-active substances has been shown, in terms of the effect on the heat release of ASC, in the following series: alkaline salt of carboxylic acid>salt of the quaternary ammonium compound>simple polyester> polyalcohol>complex polyester. The reported results are important in view of the possibility of effective adjustment of ASC heat release by influencing the structure formation of surfactant with a certain molecular arrangement in order to predictably reduce crack formation in a thermally-stressed state and a corresponding increase in the durability of structure

    Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation

    Full text link
    The problem of plasticization of alkaline cements was analyzed and the ways of its solution were offered. The problem is related to the structural instability of a number of chemical admixtures that are effective in plasticisation of clinker cements in the highly alkaline media of hardening cement. Superplasticizers based on polyesters lose their steric effect due to the hydrolysis reaction. On the other hand, selectivity of action of chemical admixtures is associated with the changes in a wide range of compositions of alkaline cements. In addition, the degree of changes in the structure of admixtures depends not only on the medium pH but also on the nature of the alkaline component, the production process and use of such cements. Generalization of the problems made it possible to proceed with the expansion of the range of substances from the class of surface active substances (SAS), their experimental verification and the application proposal for plasticization of alkaline cements. As plasticizing SAS characterized by stability of molecular structure in alkaline media, low- and high-molecular compounds from the class of acyclic (aliphatic) compounds or fatty compounds were considered. The polyester-based superplasticizers traditionally applied in plasticization of calcium cement systems were used for comparison. Variation of the nature and ratio of components in the composition of alkaline cements as well as the chemical admixture nature were taken as the main factors in the study of features of cement plasticization. Comparative evaluation of effectiveness of these admixtures indicates selectivity of use taking into account composition of alkaline cements. As a result of this research, systematization of classes of chemical compounds according to their effectiveness as plasticizers for alkaline cements was proposed. Such a systematization can be used in development of commercial products in a form of plasticizing additives for concretes and mortars

    Development of Solutions Concerning Regulation of Proper Deformations in Alkali-activated Cements

    Full text link
    The essence of the problem related to proper deformations in alkali-activated cements (AAC) complicated with high content of gel-like hydrate formations was analyzed. Cement types diametrically opposite in their compositions and, accordingly, in the content of gel phases during hydration, that is, the alkali-activated portland cement (AAPC) and alkali-activated slag cement (AASC) were taken for consideration. Approaches to formation of an effective structure of artificial stone counteracting shrinkage deformation by means of interference in structure formation when using complexes of mineral and organic compounds were proposed. Such compounds in composition of complex organo-mineral admixtures jointly influence intensification of crystallization processes and formation of an effective pore structure and morphology of hydrate phases while reducing water content in artificial stone. Salt electrolytes of various anionic types and anion-active surface-active substances were considered as ingredients of the proposed complex modifying admixtures.It has been found that the "salt electrolyte–surfactant" system is the most effective for AAPC modification. It was shown that modification of AAPC with this complex admixture based on NaNO3 reduced shrinkage from 0.406 to 0.017 mm/m. Instead, the use of Na2SO4 provided AAC of this type with a capacity of expansion up to 0.062 mm/m. It was shown that the effect of compensated shrinkage of modified AAPC is associated with a higher crystallization of low-basicity hydrosilicates (CSH(B)) and calcium hydroaluminates (CaO∙Al2O3∙10H2O). An additional effect is associated with formation of sulfate-containing sodium-calcium hydroaluminate (for the Na2SO4-based system) and crystalline calcium hydronitroaluminate (for the NaNO3-based system) with a corresponding microstructure stress.For further development, a complex admixture of "Portland cement clinker–salt electrolyte–surfactant" system was proposed for AASC modification. It provided shrinkage reduction from 0.984 mm/m to 0.683 mm/m. Minimization of the modified AASC shrinkage was explained by formation of sodium hydroalumosilicate of gmelinite type ((Na2Ca)∙Al2∙Si4∙O12∙6H2O) with a high degree of crystallization along with low-basicity calcium hydrosilicates. It was noted that the cement stone structure is characterized by high density, uniformity, and consolidation of hydrate formation

    Development of Solutions Concerning Regulation of Proper Deformations in Alkali-activated Cements

    Full text link
    The essence of the problem related to proper deformations in alkali-activated cements (AAC) complicated with high content of gel-like hydrate formations was analyzed. Cement types diametrically opposite in their compositions and, accordingly, in the content of gel phases during hydration, that is, the alkali-activated portland cement (AAPC) and alkali-activated slag cement (AASC) were taken for consideration. Approaches to formation of an effective structure of artificial stone counteracting shrinkage deformation by means of interference in structure formation when using complexes of mineral and organic compounds were proposed. Such compounds in composition of complex organo-mineral admixtures jointly influence intensification of crystallization processes and formation of an effective pore structure and morphology of hydrate phases while reducing water content in artificial stone. Salt electrolytes of various anionic types and anion-active surface-active substances were considered as ingredients of the proposed complex modifying admixtures.It has been found that the "salt electrolyte–surfactant" system is the most effective for AAPC modification. It was shown that modification of AAPC with this complex admixture based on NaNO3 reduced shrinkage from 0.406 to 0.017 mm/m. Instead, the use of Na2SO4 provided AAC of this type with a capacity of expansion up to 0.062 mm/m. It was shown that the effect of compensated shrinkage of modified AAPC is associated with a higher crystallization of low-basicity hydrosilicates (CSH(B)) and calcium hydroaluminates (CaO∙Al2O3∙10H2O). An additional effect is associated with formation of sulfate-containing sodium-calcium hydroaluminate (for the Na2SO4-based system) and crystalline calcium hydronitroaluminate (for the NaNO3-based system) with a corresponding microstructure stress.For further development, a complex admixture of "Portland cement clinker–salt electrolyte–surfactant" system was proposed for AASC modification. It provided shrinkage reduction from 0.984 mm/m to 0.683 mm/m. Minimization of the modified AASC shrinkage was explained by formation of sodium hydroalumosilicate of gmelinite type ((Na2Ca)∙Al2∙Si4∙O12∙6H2O) with a high degree of crystallization along with low-basicity calcium hydrosilicates. It was noted that the cement stone structure is characterized by high density, uniformity, and consolidation of hydrate formation

    Electronic and optical properties of crystalline nitrogen versus black phosphorus: A comparative first-principles study

    Full text link
    Crystalline black nitrogen (BN) is an allotrope of nitrogen with the black phosphorus (BP) structure recently synthesized at high pressure by two independent research groups [Ji et al., Sci. Adv. 6, eaba9206 (2020); Laniel et al., Phys. Rev. Lett. 124, 216001 (2020)]. Here, we present a systematic study of the electronic and optical properties of BN focusing on its comparison with BP. To this end, we use the state-of-the-art quasiparticle self-consistent GWGW approach with vertex corrections in both the electronic and optical channels. Despite many similarities, the properties of BN are found to be considerably different. Unlike BP, BN exhibits a larger optical gap (2.5 vs 0.26 eV), making BN transparent in the visible spectral region with a highly anisotropic optical response. This difference can be primarily attributed to a considerably reduced dielectric screening in BN, leading to enhancement of the effective Coulomb interaction. Despite relatively strong Coulomb interaction, exciton formation is largely suppressed in both materials. Our analysis of the elastic properties shows exceptionally high stiffness of BN, comparable to that of diamond.Comment: Final version; 10 pages, 9 figures, 6 table
    corecore