195 research outputs found

    A Punctuated Equilibrium Analysis of the Climate Evolution of Cenozoic: Hierarchy of Abrupt Transitions

    Full text link
    The Earth's climate has experienced numerous critical transitions during its history, which have often been accompanied by massive and rapid changes in the biosphere. Such transitions are evidenced in various proxy records covering different timescales. The goal is then to identify, date, and rank past critical transitions in terms of importance, thus possibly yielding a more thorough perspective on climatic history. To illustrate such an angle, which inspired the punctuated equilibrium angle on the theory of evolution, we have analyzed 2 key high-resolution datasets: the CENOGRID marine compilation (past 66 Myr), and North Atlantic U1308 record (past 3.3 Myr). By combining recurrence analysis of the individual time series with a multivariate representation of the system based on the theory of the quasi-potential, we identify the key abrupt transitions associated with major regime changes that differentiate various clusters of climate variability. This allows interpreting the time-evolution of the system as a trajectory taking place in a dynamical landscape, whose multiscale features are associated with a hierarchy of tipping points.Comment: 27 pages, 5 figures plus supplementary materia

    Climatic transfer function from Quaternary molluscs in European loess deposits

    Get PDF
    Correspondence and multiple regression analysis of terrestrial molluscs in the loess sections of Achenheim (Alsace, France) has permitted the reconstruction of climatic variations during the last three glacial-interglacial cycles back to 339,000 yr B.P. The sequence has been dated according to the SPECMAP chronology o

    Mineral magnetic characterization of the Upper Pleniglacial Nussloch loess sequence (Germany): an insight into local environmental processes

    Get PDF
    International audience(1) First comprehensive environmental magnetism study of the Nussloch (Rhine River Valley, Germany) loess/palaeosol deposit. (2) Bulk ferrimagnetic concentration parameters are dominantly controlled by variations in coarse-grained MD ferrimagnetic particles of detrital aeolian origin. (3) The imprint of waterlogging-induced redoxomorphic processes on the magnetic record is observed by dissolution of fine-grained magnetic minerals. (4) The interpretation of magnetic susceptibility variations alone within loess and palaeosol deposits following the wind-vigour or pedogenic enhancement models will be hindered by waterlogging-induced redoxomorphic processes, if present. S U M M A R Y Presently, most loess/palaeosol magnetic susceptibility records are interpreted as following either the wind-vigour model or the pedogenic enhancement model. However redoxomorphic processes induced by waterlogging, often referred to gleying in the loess literature, are also known to alter loess deposits but their impact on loess/palaeosol magnetic susceptibility records has received little attention. The reported rock magnetic study aims to characterize the mineral magnetic response of loess to waterlogging-induced redoxomorphic processes, thus improving our understanding of mineral magnetic changes within loess deposits with respect to environmental and climate conditions. The Nussloch loess-palaeosol deposit (Rhine Valley, Germany) was targeted because it is one of the best-studied Pleniglacial deposits for Western Europe in which numerous tundra gley intervals have been identified. Moreover, a comprehensive high-resolution environmental magnetism study has never been undertaken for this site. Various rock magnetism experiments were conducted at both room and low temperatures to characterise the composition, concentration and relative magnetic grain size of the mineral magnetic assemblage. The relative changes in magnetic parameters within the investigated loess interval are primarily controlled by (1) varying concentrations of coarse-grained ferri-magnetic particles of detrital (aeolian) origin and (2) dissolution of fine-grained ferrimagnetic particles related to in situ post-depositional alteration promoted by waterlogging-induced re-doxomorphic processes. Goethite is found to be ubiquitous throughout the studied interval and is argued to have both a primary (aeolian) and secondary (in situ) origin. We conclude, that redoxomorphic processes induced by waterlogging, if present, will hinder the interpretation of magnetic susceptibility variations within loess and palaeosol deposits following the expected relationships dictated by the wind-vigour and the pedogenic enhancement magnetism models

    Three exceptionally strong East-Asian summer monsoon events during glacial times in the past 470 kyr

    Get PDF
    Chinese loess sequences are interpreted as a reliable record of the past variation of the East Asian monsoon regime through the alternation of loess and paleosols units, dominated by the winter and summer monsoon, respectively. Different proxies have been used to describe this system, mostly geophysical, geochemical or sedimentological. Terrestrial mollusks are also a reliable proxy of past environmental conditions and are often preserved in large numbers in loess deposits. The analysis of the mollusk remains in the Luochuan sequence, comprising L5 loess to S0 soil, i.e. the last 500 ka, shows that for almost all identified species, the abundance is higher at the base of the interval (L5 to L4) than in the younger deposits. Using the present ecological requirements of the identified mollusk species in the Luochuan sequence allows the definition of two main mollusk groups varying during the last 500 kyr. The cold-aridiphilous individuals indicate the so-called Asian winter monsoon regime and predominantly occur during glacials, when dust is deposited. The thermal-humidiphilous mollusks are prevalent during interglacial or interstadial conditions of the Asian summer monsoon, when soil formation takes place. In the sequence, three events with exceptionally high abundance of the Asian summer monsoon indicators are recorded during the L5, L4 and L2 glacial intervals, i.e., at about 470, 360 and 170 kyr, respectively. The L5 and L4 events appear to be the strongest (high counts). Similar variations have also been identified in the Xifeng sequence, distant enough from Luochuan, but also in Lake Baikal further North, to suggest that this phenomenon is regional rather than local. The indicators of the summer monsoon within the glacial intervals imply a strengthened East-Asian monsoon interpreted as corresponding to marine isotope stages 12, 10 and 6, respectively. The L5 and L2 summer monsoons are coeval with Mediterranean sapropels S12 and S6, which characterize a strong African summer monsoon with relatively low surface water salinity in the Indian Ocean. Changes in the precipitation regime could correspond to a response to a particular astronomical configuration (low obliquity, low precession, summer solstice at perihelion) leading to an increased summer insolation gradient between the tropics and the high latitudes and resulting in enhanced atmospheric water transport from the tropics to the African and Asian continents. However, other climate drivers such as reorganization of marine and atmospheric circulations, tectonic, and the extent of the Northern Hemisphere ice sheet are also discussed
    • 

    corecore