136 research outputs found
Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector.
For 15 years, non-Saccharomyces starter cultures represent a new interesting segment in the dynamic field of multinationals and national companies that develop and sell microbial-based biotechnological solutions for the wine sector. Although the diversity and the properties of non-Saccharomyces species/strains have been recently fully reviewed, less attention has been deserved to the commercial starter cultures in term of scientific findings, patents, and their innovative appli-cations. Considering the potential reservoir of biotechnological innovation, these issues represent an under-estimated possible driver of coordination and harmonization of research and development activities in the field of wine microbiology. After a wide survey, we encompassed 26 different commercial yeasts starter cultures formulated in combination with at least one non-Saccharomyces strain. The most recent scientific advances have been explored delving into the oenological significance of these commercial starter cultures. Finally, we propose an examination of patent literature for the main yeasts species commercialised in non-Saccharomyces based products. We highlight the presence of asymmetries among scientific findings and the number of patents concerning non-Saccharomyces-based commercial products for oenological purposes. Further in-vestigations on these microbial resources might open new perspectives and stimulate attractive in-novations in the field of wine-making biotechnologies
PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium
Future cosmology space missions will concentrate on measuring the
polarization of the Cosmic Microwave Background, which potentially carries
invaluable information about the earliest phases of the evolution of our
universe. Such ambitious projects will ultimately be limited by the sensitivity
of the instrument and by the accuracy at which polarized foreground emission
from our own Galaxy can be subtracted out. We present the PILOT balloon project
which will aim at characterizing one of these foreground sources, the
polarization of the dust continuum emission in the diffuse interstellar medium.
The PILOT experiment will also constitute a test-bed for using multiplexed
bolometer arrays for polarization measurements. We present the results of
ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter,
and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be
published in Proc. SPIE volume 915
R&D progress on second-generation crystals for Laue lens applications
The concept of a gamma-ray telescope based on a Laue lens offers the
possibility to increase the sensitivity by more than an order of magnitude with
respect to existing instruments. Laue lenses have been developed by our
collaboration for several years : the main achievement of this R&D program was
the CLAIRE lens prototype. Since then, the endeavour has been oriented towards
the development of efficient diffracting elements (crystal slabs), the aim
being to step from a technological Laue lens to a scientifically exploitable
lens. The latest mission concept featuring a gamma-ray lens is the European
Gamma-Ray Imager (GRI) which intends to make use of the Laue lens to cover
energies from 200 keV to 1300 keV.
Investigations of two promising materials, low mosaicity copper and gradient
concentration silicon-germanium are presented in this paper. The measurements
have been performed during three runs on beamline ID15A of the European
Synchrotron Radiation Facility, and on the GAMS 4 instrument of the Institute
Laue-Langevin (both in Grenoble, France) using highly monochromatic beam of
energy close to 500 keV. Despite it was not perfectly homogeneous, the
presented copper crystal exhibits peak reflectivity of 25% in accordance with
theoretical predictions, and a mosaicity around 26 arcsec, the ideal range for
the realization of a Laue lens such as GRI. Silicon-germanium featuring a
constant gradient have been measured for the very first time at 500 keV. Two
samples showed a quite homogeneous reflectivity reaching 26%, which is far from
the 48% already observed in experimental crystals but a very encouraging
beginning. This results have been used to estimate the performance of the GRI
Laue lens design
Pilot optical alignment
PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 μm and 550 μm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We’ll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances
PILOT: optical performance and end-to-end characterisation
PILOT (Polarized Instrument for the Long-wavelength Observations of the Tenuous ISM), is a balloon-borne astronomy experiment dedicated to study the polarization of dust emission from the diffuse ISM in our Galaxy [1]. The observations of PILOT have two major scientific objectives. Firstly, they will allow us to constrain the large-scale geometry of the magnetic field in our Galaxy and to study in details the alignment properties of dust grains with respect to the magnetic field. In this domain, the measurements of PILOT will complement those of the Planck satellite at longer wavelengths. In particular, they will bring information at a better angular resolution, which is critical in crowded regions such as the Galactic plane. They will allow us to better understand how the magnetic field is shaping the ISM material on large scale in molecular clouds, and the role it plays in the gravitational collapse leading to star formation. Secondly, the PILOT observations will allow us to measure for the first time the polarized dust emission towards the most diffuse regions of the sky, where the measurements are the most easily interpreted in terms of the physics of dust. In this particular domain, PILOT will play a role for future CMB missions similar to that played by the Archeops experiment for Planck. The results of PILOT will allow us to gain knowledge about the magnetic properties of dust grains and about the structure of the magnetic field in the diffuse ISM that is necessary to a precise foreground subtraction in future polarized CMB measurements. The PILOT measurements, combined with those of Planck at longer wavelengths, will therefore allow us to further constrain the dust models. The outcome of such studies will likely impact the instrumental and technical choices for the future space missions dedicated to CMB polarization. The PILOT instrument will allow observations in two photometric channels at wavelengths 240 ÎĽm and 550 ÎĽm, with an angular resolution of a few arcminutes. We will make use of large format bolometer arrays, developed for the PACS instrument on board the Herschel satellite. With 1024 detectors per photometric channel and photometric band optimized for the measurement of dust emission, PILOT is likely to become the most sensitive experiment for this type of measurements. The PILOT experiment will take advantage of the large gain in sensitivity allowed by the use of large format, filled bolometer arrays at frequencies more favorable to the detection of dust emission. This paper presents the optical design, optical characterization and its performance. We begin with a presentation of the instrument and the optical system and then we summarise the main optical tests performed. In section III, we present preliminary end-to-end test results
PILOT: optical performance and end-to-end characterisation
PILOT (Polarized Instrument for the Long-wavelength Observations of the Tenuous ISM), is a balloon-borne astronomy experiment dedicated to study the polarization of dust emission from the diffuse ISM in our Galaxy [1]. The observations of PILOT have two major scientific objectives. Firstly, they will allow us to constrain the large-scale geometry of the magnetic field in our Galaxy and to study in details the alignment properties of dust grains with respect to the magnetic field. In this domain, the measurements of PILOT will complement those of the Planck satellite at longer wavelengths. In particular, they will bring information at a better angular resolution, which is critical in crowded regions such as the Galactic plane. They will allow us to better understand how the magnetic field is shaping the ISM material on large scale in molecular clouds, and the role it plays in the gravitational collapse leading to star formation. Secondly, the PILOT observations will allow us to measure for the first time the polarized dust emission towards the most diffuse regions of the sky, where the measurements are the most easily interpreted in terms of the physics of dust. In this particular domain, PILOT will play a role for future CMB missions similar to that played by the Archeops experiment for Planck. The results of PILOT will allow us to gain knowledge about the magnetic properties of dust grains and about the structure of the magnetic field in the diffuse ISM that is necessary to a precise foreground subtraction in future polarized CMB measurements. The PILOT measurements, combined with those of Planck at longer wavelengths, will therefore allow us to further constrain the dust models. The outcome of such studies will likely impact the instrumental and technical choices for the future space missions dedicated to CMB polarization. The PILOT instrument will allow observations in two photometric channels at wavelengths 240 ÎĽm and 550 ÎĽm, with an angular resolution of a few arcminutes. We will make use of large format bolometer arrays, developed for the PACS instrument on board the Herschel satellite. With 1024 detectors per photometric channel and photometric band optimized for the measurement of dust emission, PILOT is likely to become the most sensitive experiment for this type of measurements. The PILOT experiment will take advantage of the large gain in sensitivity allowed by the use of large format, filled bolometer arrays at frequencies more favorable to the detection of dust emission. This paper presents the optical design, optical characterization and its performance. We begin with a presentation of the instrument and the optical system and then we summarise the main optical tests performed. In section III, we present preliminary end-to-end test results
Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented
LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes
Overview of the medium and high frequency telescopes of the LiteBIRD space mission
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD
- …