573 research outputs found
Longitudinal impact of process-oriented guided inquiry learning on the attitudes, self-efficacy and experiences of pre-medical chemistry students
A follow-up study was conducted with foundation-year chemistry students who were taught in an
inquiry- and role-based, small-group active learning environment in order to evaluate their attitudes,
experiences and self-efficacy during pre-medical chemistry courses. The study adopted a mixedmethods research design that involved both experimental and comparison groups. Using the CAEQ
(Chemistry Attitudes and Experiences Questionnaire) and the ASCI v2 (Attitude toward the Study of
Chemistry Inventory), the findings of this study indicated that inquiry-based chemistry learning
experience improves the students’ intellectual accessibility and emotional satisfaction as well as
develops their self-efficacy levels while pursuing intensive pre-medical courses in chemistry. The
results of the qualitative data analyses using a course experience questionnaire indicated that the
process-oriented guided inquiry learning (POGIL) experience helped the students succeed in rigorous
pre-medical chemistry courses and gained some process skills required in the medical programme as
listed by the AAMC (American Association of Medical Colleges)
Risk of lung cancer associated with domestic use of coal in Xuanwei, China: retrospective cohort study
Objective: To estimate the risk of lung cancer associated with the use of different types of coal for household cooking and heating.
Setting: Xuanwei County, Yunnan Province, China.
Design: Retrospective cohort study (follow-up 1976-96) comparing mortality from lung cancer between lifelong users of “smoky coal” (bituminous) and “smokeless coal” (anthracite).
Participants: 27 310 individuals using smoky coal and 9962 individuals using smokeless coal during their entire life.
Main outcome measures: Primary outcomes were absolute and relative risk of death from lung cancer among users of different types of coal. Unadjusted survival analysis was used to estimate the absolute risk of lung cancer, while Cox regression models compared mortality hazards for lung cancer between smoky and smokeless coal users.
Results: Lung cancer mortality was substantially higher among users of smoky coal than users of smokeless coal. The absolute risks of lung cancer death before 70 years of age for men and women using smoky coal were 18% and 20%, respectively, compared with less than 0.5% among smokeless coal users of both sexes. Lung cancer alone accounted for about 40% of all deaths before age 60 among individuals using smoky coal. Compared with smokeless coal, use of smoky coal was associated with an increased risk of lung cancer death (for men, hazard ratio 36 (95% confidence interval 20 to 65); for women, 99 (37 to 266)).
Conclusions: In Xuanwei, the domestic use of smoky coal is associated with a substantial increase in the absolute lifetime risk of developing lung cancer and is likely to represent one of the strongest effects of environmental pollution reported for cancer risk. Use of less carcinogenic types of coal could translate to a substantial reduction of lung cancer risk
Phase transitions in biological membranes
Native membranes of biological cells display melting transitions of their
lipids at a temperature of 10-20 degrees below body temperature. Such
transitions can be observed in various bacterial cells, in nerves, in cancer
cells, but also in lung surfactant. It seems as if the presence of transitions
slightly below physiological temperature is a generic property of most cells.
They are important because they influence many physical properties of the
membranes. At the transition temperature, membranes display a larger
permeability that is accompanied by ion-channel-like phenomena even in the
complete absence of proteins. Membranes are softer, which implies that
phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal
propagation phenomena related to nerve pulses are strongly enhanced. The
position of transitions can be affected by changes in temperature, pressure, pH
and salt concentration or by the presence of anesthetics. Thus, even at
physiological temperature, these transitions are of relevance. There position
and thereby the physical properties of the membrane can be controlled by
changes in the intensive thermodynamic variables. Here, we review some of the
experimental findings and the thermodynamics that describes the control of the
membrane function.Comment: 23 pages, 15 figure
Radiative Transfer for Exoplanet Atmospheres
Remote sensing of the atmospheres of distant worlds motivates a firm
understanding of radiative transfer. In this review, we provide a pedagogical
cookbook that describes the principal ingredients needed to perform a radiative
transfer calculation and predict the spectrum of an exoplanet atmosphere,
including solving the radiative transfer equation, calculating opacities (and
chemistry), iterating for radiative equilibrium (or not), and adapting the
output of the calculations to the astronomical observations. A review of the
state of the art is performed, focusing on selected milestone papers.
Outstanding issues, including the need to understand aerosols or clouds and
elucidating the assumptions and caveats behind inversion methods, are
discussed. A checklist is provided to assist referees/reviewers in their
scrutiny of works involving radiative transfer. A table summarizing the
methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in
references, main text unchange
Use of photosensitising diuretics and risk of skin cancer: a population-based case–control study
Diuretics have photosensitising properties. However, little is known about how these diuretics affect the risk of skin cancers. In North Jutland County, Denmark, we investigated whether the use of photosensitising diuretics was associated with an increased risk for developing basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant melanoma (MM). From the cancer registry, we identified primary cases of BCC, SCC and MM during the period of 1989–2003. We selected four population controls for each case from the Danish Civil Registration System, matched on age and gender. Prescriptions for photosensitising diuretics before cancer diagnosis were ascertained in the county's Prescription Database. We used conditional logistic regression to compute incidence rate ratio (IRR), controlling for the chronic medical conditions and for the previous use of oral glucocorticoids. We found an increased risk of SCC (IRR of 1.79 (95% confidence interval (CI): 1.45–2.21)) and MM (IRR of 1.43 (95% CI: 1.09–1.88)) among users of combined amiloride and hydrochlorothiazide therapy. An increased risk of MM (IRR of 3.30 (95% CI: 1.34–8.10)) was found among users of indapamide. We found little associations with risk of BCC. Our findings provide evidence that the use of some photosensitising diuretics is associated with an increased risk for SCC and MM
Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining
[EN] Background: Public health in several countries is characterized by a shortage of professionals and a lack of economic resources. Monitoring and redesigning processes can foster the success of health care institutions, enabling them to provide a quality service while simultaneously reducing costs. Process mining, a discipline that extracts knowledge from information system data to analyze operational processes, affords an opportunity to understand health care processes.
Objective: Health care processes are highly flexible and multidisciplinary, and health care professionals are able to coordinate in a variety of different ways to treat a diagnosis. The aim of this work was to understand whether the ways in which professionals coordinate their work affect the clinical outcome of patients.
Methods: This paper proposes a method based on the use of process mining to identify patterns of collaboration between physician, nurse, and dietitian in the treatment of patients with type 2 diabetes mellitus and to compare these patterns with the clinical evolution of the patients within the context of primary care. Clustering is used as part of the preprocessing of data to manage the variability, and then process mining is used to identify patterns that may arise.
Results: The method is applied in three primary health care centers in Santiago, Chile. A total of seven collaboration patterns were identified, which differed primarily in terms of the number of disciplines present, the participation intensity of each discipline, and the referrals between disciplines. The pattern in which the three disciplines participated in the most equitable and comprehensive manner had a lower proportion of highly decompensated patients compared with those patterns in which the three disciplines participated in an unbalanced manner.
Conclusions: By discovering which collaboration patterns lead to improved outcomes, health care centers can promote the most successful patterns among their professionals so as to improve the treatment of patients. Process mining techniques are useful for discovering those collaborations patterns in flexible and unstructured health care processes.This paper was partially funded by the National Commission for Scientific and Technological Research, the Formation of Advanced Human Capital Program and the National Fund for Scientific and Technological Development (CONICYT-PCHA/Doctorado Nacional/2016-21161705 and CONICYT-FONDECYT/1150365; Chile). The authors would like to thank Ancora UC primary health care centers for their help with this research. The founding sponsors had no role in the design of the study in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.Conca, T.; Saint Pierre, C.; Herskovic, V.; Sepulveda, M.; Capurro, D.; Prieto, F.; Fernández Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. JOURNAL OF MEDICAL INTERNET RESEARCH. 20(4). https://doi.org/10.2196/jmir.8884S204Chen, C.-C., Tseng, C.-H., & Cheng, S.-H. (2013). Continuity of Care, Medication Adherence, and Health Care Outcomes Among Patients With Newly Diagnosed Type 2 Diabetes. Medical Care, 51(3), 231-237. doi:10.1097/mlr.0b013e31827da5b9International Diabetes FederationIDF20152018-03-19IDF Diabetes Atlas 7th Edition (2015) https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventh-edition.htmlMinisterio de Salud de Chileminsal.cl20102018-03-23Encuesta Nacional de Salud ENS Chile 2009-2010 http://www.minsal.cl/estudios_encuestas_salud/Ministerio de Salud de Chileminsal.cl20102018-03-20Guía Clinica Diabetes Mellitus Tipo 2 http://www.minsal.cl/portal/url/item/72213ed52c3e23d1e04001011f011398.pdfSapunar Z., J. (2016). EPIDEMIOLOGÍA DE LA DIABETES MELLITUS EN CHILE. Revista Médica Clínica Las Condes, 27(2), 146-151. doi:10.1016/j.rmclc.2016.04.003World Health Organizationwho.int2018-03-20Global Report on Diabetes http://www.who.int/diabetes/global-report/en/Poblete, F., Glasinovic, A., Sapag, J., Barticevic, N., Arenas, A., & Padilla, O. (2015). Apoyo social y salud cardiovascular: adaptación de una escala de apoyo social en pacientes hipertensos y diabéticos en la atención primaria chilena. Atención Primaria, 47(8), 523-531. doi:10.1016/j.aprim.2014.10.010Tuligenga, R. H., Dugravot, A., Tabák, A. G., Elbaz, A., Brunner, E. J., Kivimäki, M., & Singh-Manoux, A. (2014). Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. The Lancet Diabetes & Endocrinology, 2(3), 228-235. doi:10.1016/s2213-8587(13)70192-xGamiochipi, M., Cruz, M., Kumate, J., & Wacher, N. H. (2016). Effect of an intensive metabolic control lifestyle intervention in type-2 diabetes patients. Patient Education and Counseling, 99(7), 1184-1189. doi:10.1016/j.pec.2016.01.017Wagner, E. H. (2001). Effect of Improved Glycemic Control on Health Care Costs and Utilization. JAMA, 285(2), 182. doi:10.1001/jama.285.2.182McDonald, J., Jayasuriya, R., & Harris, M. F. (2012). The influence of power dynamics and trust on multidisciplinary collaboration: a qualitative case study of type 2 diabetes mellitus. BMC Health Services Research, 12(1). doi:10.1186/1472-6963-12-63Gucciardi, E., Espin, S., Morganti, A., & Dorado, L. (2016). Exploring interprofessional collaboration during the integration of diabetes teams into primary care. BMC Family Practice, 17(1). doi:10.1186/s12875-016-0407-1Caron, F., Vanthienen, J., Vanhaecht, K., Limbergen, E. V., De Weerdt, J., & Baesens, B. (2014). Monitoring care processes in the gynecologic oncology department. Computers in Biology and Medicine, 44, 88-96. doi:10.1016/j.compbiomed.2013.10.015Rothman, A. A., & Wagner, E. H. (2003). Chronic Illness Management: What Is the Role of Primary Care? Annals of Internal Medicine, 138(3), 256. doi:10.7326/0003-4819-138-3-200302040-00034Organisation for Economic Co-operation and DevelopmentOECD20162018-03-20OECD Health Policy Overview: Health Policy in Chile http://www.oecd.org/els/health-systems/health-policy-in-your-country.htmRojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Mans, R. S., van der Aalst, W. M. P., & Vanwersch, R. J. B. (2015). Process Mining in Healthcare. SpringerBriefs in Business Process Management. doi:10.1007/978-3-319-16071-9Van der Aalst, W. M. P. (2011). Process Mining. doi:10.1007/978-3-642-19345-3Kim, E., Kim, S., Song, M., Kim, S., Yoo, D., Hwang, H., & Yoo, S. (2013). Discovery of Outpatient Care Process of a Tertiary University Hospital Using Process Mining. Healthcare Informatics Research, 19(1), 42. doi:10.4258/hir.2013.19.1.42Harper, P. R., Sayyad, M. G., de Senna, V., Shahani, A. K., Yajnik, C. S., & Shelgikar, K. M. (2003). A systems modelling approach for the prevention and treatment of diabetic retinopathy. European Journal of Operational Research, 150(1), 81-91. doi:10.1016/s0377-2217(02)00787-7Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Ferreira, D., Zacarias, M., Malheiros, M., & Ferreira, P. (2007). Approaching Process Mining with Sequence Clustering: Experiments and Findings. Business Process Management, 360-374. doi:10.1007/978-3-540-75183-0_26Cheong, L. H., Armour, C. L., & Bosnic-Anticevich, S. Z. (2013). Multidisciplinary collaboration in primary care: through the eyes of patients. Australian Journal of Primary Health, 19(3), 190. doi:10.1071/py12019Boyle, E., Saunders, R., & Drury, V. (2016). A qualitative study of patient experiences of Type 2 Diabetes care delivered comparatively by General Practice Nurses and Medical Practitioners. Journal of Clinical Nursing, 25(13-14), 1977-1986. doi:10.1111/jocn.13219UddinSHossainLEffects of Physician Collaboration Network on Hospital Outcomes2012Fifth Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2012)2012Melbourne, AustraliaBorgermans, L., Goderis, G., Van Den Broeke, C., Verbeke, G., Carbonez, A., Ivanova, A., … Grol, R. (2009). Interdisciplinary diabetes care teams operating on the interface between primary and specialty care are associated with improved outcomes of care: findings from the Leuven Diabetes Project. BMC Health Services Research, 9(1). doi:10.1186/1472-6963-9-179Bosch, M., Dijkstra, R., Wensing, M., van der Weijden, T., & Grol, R. (2008). Organizational culture, team climate and diabetes care in small office-based practices. BMC Health Services Research, 8(1). doi:10.1186/1472-6963-8-180Counsell, S. R., Callahan, C. M., Clark, D. O., Tu, W., Buttar, A. B., Stump, T. E., & Ricketts, G. D. (2007). Geriatric Care Management for Low-Income Seniors. JAMA, 298(22), 2623. doi:10.1001/jama.298.22.2623Anderson, J. G. (2002). Evaluation in health informatics: social network analysis. Computers in Biology and Medicine, 32(3), 179-193. doi:10.1016/s0010-4825(02)00014-8Gray, J. E., Davis, D. A., Pursley, D. M., Smallcomb, J. E., Geva, A., & Chawla, N. V. (2010). Network Analysis of Team Structure in the Neonatal Intensive Care Unit. PEDIATRICS, 125(6), e1460-e1467. doi:10.1542/peds.2009-2621Mian, O., Koren, I., & Rukholm, E. (2012). Nurse practitioners in Ontario primary healthcare: Referral patterns and collaboration with other healthcare professionals. Journal of Interprofessional Care, 26(3), 232-239. doi:10.3109/13561820.2011.650300Crossley, N., Bellotti, E., Edwards, G., Everett, M. G., Koskinen, J., & Tranmer, M. (2015). Social Network Analysis for Ego-Nets. doi:10.4135/9781473911871Ministerio de Salud de Chile2018-03-20Fondo Nacional de Salud https://www.fonasa.cl/sites/fonasa/beneficiariosGoldstein, D. E., Little, R. R., Lorenz, R. A., Malone, J. I., Nathan, D., Peterson, C. M., & Sacks, D. B. (2004). Tests of Glycemia in Diabetes. Diabetes Care, 27(7), 1761-1773. doi:10.2337/diacare.27.7.1761Meduru, P., Helmer, D., Rajan, M., Tseng, C.-L., Pogach, L., & Sambamoorthi, U. (2007). Chronic Illness with Complexity: Implications for Performance Measurement of Optimal Glycemic Control. Journal of General Internal Medicine, 22(S3), 408-418. doi:10.1007/s11606-007-0310-5Vermeire, E., Hearnshaw, H., Van Royen, P., & Denekens, J. (2001). Patient adherence to treatment: three decades of research. A comprehensive review. Journal of Clinical Pharmacy and Therapeutics, 26(5), 331-342. doi:10.1046/j.1365-2710.2001.00363.xKarter, A. J., Parker, M. M., Moffet, H. H., Ahmed, A. T., Ferrara, A., Liu, J. Y., & Selby, J. V. (2004). Missed Appointments and Poor Glycemic Control. Medical Care, 42(2), 110-115. doi:10.1097/01.mlr.0000109023.64650.73World Health Organization20032018-03-20Adherence to long-term therapies: evidence for action http://www.who.int/chp/knowledge/publications/adherence_report/en/Toth, E. L., Majumdar, S. R., Guirguis, L. M., Lewanczuk, R. Z., Lee, T. K., & Johnson, J. A. (2003). Compliance with Clinical Practice Guidelines for Type 2 Diabetes in Rural Patients: Treatment Gaps and Opportunities for Improvement. Pharmacotherapy, 23(5), 659-665. doi:10.1592/phco.23.5.659.32203Melnikow, J., & Kiefe, C. (1994). Patient compliance and medical research. Journal of General Internal Medicine, 9(2), 96-105. doi:10.1007/bf02600211Fernandez-Llatas, C., Valdivieso, B., Traver, V., & Benedi, J. M. (2014). Using Process Mining for Automatic Support of Clinical Pathways Design. Data Mining in Clinical Medicine, 79-88. doi:10.1007/978-1-4939-1985-7_5Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Wishah, R. A., Al-Khawaldeh, O. A., & Albsoul, A. M. (2015). Impact of pharmaceutical care interventions on glycemic control and other health-related clinical outcomes in patients with type 2 diabetes: Randomized controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(4), 271-276. doi:10.1016/j.dsx.2014.09.00
Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand
Dengue viruses are a major cause of illness and hospitalizations in tropical and subtropical regions of the world. Severe dengue illness can cause prolonged hospitalization and in some cases death in both children and adults. The majority of dengue infections however are inapparent, producing little clinical illness. Little is known about the epidemiology or factors that determine the incidence of inapparent infection. We describe in a study of school children in Northern Thailand the changing nature of symptomatic and inapparent dengue infection. We demonstrate that the proportion of inapparent dengue infection varies widely among schools during a year and within schools during subsequent years. Important factors that determine this variation are the amount of dengue infection in a given and previous year. Our findings provide an important insight in the virus-host interaction that determines dengue severity, how severe a dengue epidemic may be in a given year, and important clues on how a dengue vaccine may be effective
The evolution of mammalian brain size
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size
T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs
The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al
A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity
BACKGROUND: Chronic non-cancer pain is a common problem that is often accompanied by psychiatric comorbidity and disability. The effectiveness of a multi-disciplinary pain management program was tested in a 3 month before and after trial. METHODS: Providers in an academic general medicine clinic referred patients with chronic non-cancer pain for participation in a program that combined the skills of internists, clinical pharmacists, and a psychiatrist. Patients were either receiving opioids or being considered for opioid therapy. The intervention consisted of structured clinical assessments, monthly follow-up, pain contracts, medication titration, and psychiatric consultation. Pain, mood, and function were assessed at baseline and 3 months using the Brief Pain Inventory (BPI), the Center for Epidemiological Studies-Depression Scale scale (CESD) and the Pain Disability Index (PDI). Patients were monitored for substance misuse. RESULTS: Eighty-five patients were enrolled. Mean age was 51 years, 60% were male, 78% were Caucasian, and 93% were receiving opioids. Baseline average pain was 6.5 on an 11 point scale. The average CESD score was 24.0, and the mean PDI score was 47.0. Sixty-three patients (73%) completed 3 month follow-up. Fifteen withdrew from the program after identification of substance misuse. Among those completing 3 month follow-up, the average pain score improved to 5.5 (p = 0.003). The mean PDI score improved to 39.3 (p < 0.001). Mean CESD score was reduced to 18.0 (p < 0.001), and the proportion of depressed patients fell from 79% to 54% (p = 0.003). Substance misuse was identified in 27 patients (32%). CONCLUSIONS: A primary care disease management program improved pain, depression, and disability scores over three months in a cohort of opioid-treated patients with chronic non-cancer pain. Substance misuse and depression were common, and many patients who had substance misuse identified left the program when they were no longer prescribed opioids. Effective care of patients with chronic pain should include rigorous assessment and treatment of these comorbid disorders and intensive efforts to insure follow up
- …