5,335 research outputs found
Polynomial Relations in the Centre of U_q(sl(N))
When the parameter of deformation q is a m-th root of unity, the centre of
U_q(sl(N))$ contains, besides the usual q-deformed Casimirs, a set of new
generators, which are basically the m-th powers of all the Cartan generators of
U_q(sl(N)). All these central elements are however not independent. In this
letter, generalising the well-known case of U_q(sl(2)), we explicitly write
polynomial relations satisfied by the generators of the centre. Application to
the parametrization of irreducible representations and to fusion rules are
sketched.Comment: 8 pages, minor TeXnical revision to allow automatic TeXin
Classification and Verification of Online Handwritten Signatures with Time Causal Information Theory Quantifiers
We present a new approach for online handwritten signature classification and
verification based on descriptors stemming from Information Theory. The
proposal uses the Shannon Entropy, the Statistical Complexity, and the Fisher
Information evaluated over the Bandt and Pompe symbolization of the horizontal
and vertical coordinates of signatures. These six features are easy and fast to
compute, and they are the input to an One-Class Support Vector Machine
classifier. The results produced surpass state-of-the-art techniques that
employ higher-dimensional feature spaces which often require specialized
software and hardware. We assess the consistency of our proposal with respect
to the size of the training sample, and we also use it to classify the
signatures into meaningful groups.Comment: Submitted to PLOS On
A multi-level approach to flood frequency regionalisation
A multi-level approach to flood frequency regionalisation is given. Based on observed flood data, it combines physical and statistical criteria to cluster homogeneous groups in a geographical area. Seasonality analysis helps identify catchments with a common flood generation mechanism. Scale invariance of annual maximum flood, as parameterised by basin area, is used to check the regional homogeneity of flood peaks. Homogeneity tests are used to assess the statistical robustness of the regions. The approach is based on the appropriate use of the index flood method (Dalrymple, 1960) in regions with complex climate and topography controls. An application to north-western Italy is presented.</p> <p style='line-height: 20px;'><b>Keywords:</b> homogeneity, multi-level approach, regionalisation, seasonality, scale invariance, similarity, test
Universal Statistics of the Critical Depinning Force of Elastic Systems in Random Media
We study the rescaled probability distribution of the critical depinning
force of an elastic system in a random medium. We put in evidence the
underlying connection between the critical properties of the depinning
transition and the extreme value statistics of correlated variables. The
distribution is Gaussian for all periodic systems, while in the case of random
manifolds there exists a family of universal functions ranging from the
Gaussian to the Gumbel distribution. Both of these scenarios are a priori
experimentally accessible in finite, macroscopic, disordered elastic systems.Comment: 4 pages, 4 figure
Flower, a Model for the Analysis of Hydraulic Networks and Processes
We have developed in the past years a model that describes hydraulic networks that are typical of the cryogenic interconnection of superconducting magnets. The original model, called Flower, was used mostly to provide consistent boundary conditions for the operation of a magnet. The main limitations were associated with the number and nature of modelling elements available, and to the maximum size of the model that could be solved. Here we present an improvement of the model largely relaxing the above limitations by the addition of new modelling elements, such as parallel flow heat exchangers, and by a significant improvement in the numerics of the solver, using sparse matrix storage and solution techniques. We finally show a typical application to the case of a magnet quench in the LHC string
Distinguishing noise from chaos: objective versus subjective criteria using Horizontal Visibility Graph
A recently proposed methodology called the Horizontal Visibility Graph (HVG)
[Luque {\it et al.}, Phys. Rev. E., 80, 046103 (2009)] that constitutes a
geometrical simplification of the well known Visibility Graph algorithm [Lacasa
{\it et al.\/}, Proc. Natl. Sci. U.S.A. 105, 4972 (2008)], has been used to
study the distinction between deterministic and stochastic components in time
series [L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)].
Specifically, the authors propose that the node degree distribution of these
processes follows an exponential functional of the form , in which is the node degree and is a
positive parameter able to distinguish between deterministic (chaotic) and
stochastic (uncorrelated and correlated) dynamics. In this work, we investigate
the characteristics of the node degree distributions constructed by using HVG,
for time series corresponding to chaotic maps and different stochastic
processes. We thoroughly study the methodology proposed by Lacasa and Toral
finding several cases for which their hypothesis is not valid. We propose a
methodology that uses the HVG together with Information Theory quantifiers. An
extensive and careful analysis of the node degree distributions obtained by
applying HVG allow us to conclude that the Fisher-Shannon information plane is
a remarkable tool able to graphically represent the different nature,
deterministic or stochastic, of the systems under study.Comment: Submitted to PLOS On
Two-channel analysis of QUELL experimental results
We have improved the model presently used in the thermo-hydraulic code Gandalf, adapting it to cable-in-conduit conductors with central cooling channel such as those developed for the model coils of ITER. In particular the helium flow in an arbitrary number of parallel channels have now independent velocity and thermodynamic state (pressure and temperature). We demonstrate the capability of the new model by means of comparison to measurements taken during the QUELL experiment in SULTAN. We compare in particular data on heat slug at zero current and field in a broad range of energy inputs, as well as data on quench propagation, to simulation results obtained with the single channel approximation and the newly implemented two-channel model. The latter achieves significantly better agreement with experimental data, in particular in the case of slow heating transients such as in heat slug propagation tests. (10 refs)
Modelling Strategy and Parametric Study of Metal Gaskets for Automotive Applications
This paper is focused on finite element simulation of cylinder head gaskets. Finite element codes support several methodologies, each of which has its own strengths and weaknesses. One of the key points lies in the influence of the gasket geometry on its final behaviour. Such a contribution can come from the detailed modelling of the gasket or by defining a global non-linear behaviour in which material and geometry non-linearities are summarised. Two approaches were used to simulate the gasket behaviour. The first one consists in using a 2D approach, which allows to model through-thickness non-linear behaviour of gasket. The second one consists in using conventional 3D finite element modelling. The numerical methods have been discussed and compared in relation to the accordance with experimental data, amount of information supplied and computational time required. Finally, a parametric study shows how some geometric parameters influence the compressive load and the elastic recovery of a single-layer steel gasket
- âŠ