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Abstract

A recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque et al., Phys. Rev. E., 80, 046103 (2009)]
that constitutes a geometrical simplification of the well known Visibility Graph algorithm [Lacasa et al., Proc. Natl. Sci. U.S.A.
105, 4972 (2008)], has been used to study the distinction between deterministic and stochastic components in time series
[L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)]. Specifically, the authors propose that the node degree distribution
of these processes follows an exponential functional of the form P(k)*exp({lk), in which k is the node degree and l is a
positive parameter able to distinguish between deterministic (chaotic) and stochastic (uncorrelated and correlated)
dynamics. In this work, we investigate the characteristics of the node degree distributions constructed by using HVG, for
time series corresponding to 28 chaotic maps, 2 chaotic flows and 3 different stochastic processes. We thoroughly study the
methodology proposed by Lacasa and Toral finding several cases for which their hypothesis is not valid. We propose a
methodology that uses the HVG together with Information Theory quantifiers. An extensive and careful analysis of the node
degree distributions obtained by applying HVG allow us to conclude that the Fisher-Shannon information plane is a
remarkable tool able to graphically represent the different nature, deterministic or stochastic, of the systems under study.
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Introduction

Time series, temporal sequences of measurements or observa-

tions, are one of the basic tools for investigating natural

phenomena. From time series analysis, one should judiciously

extract information about the dynamics of the underlying process.

Time series arising from chaotic systems share with those

generated by stochastic processes several properties that make

them very similar. Examples of these properties are: a wide-band

power spectrum (PS), a delta-like autocorrelation function, and an

irregular behavior of the measured signals. As irregular and

apparently unpredictable behavior is often observed in natural

time series, the question that immediately emerges is whether the

system is chaotic (low-dimensional deterministic) or stochastic. If

one is able to show that the system is dominated by low-

dimensional deterministic chaos, then only few (nonlinear and

collective) modes are required to describe the pertinent dynamics.

If not, then, the complex behavior could be modeled by a system

dominated by a very large number of excited modes which are in

general better described by stochastic or statistical approaches.

The main objective of nonlinear time series analysis is the

understanding of the dynamics of stochastic and chaotic processes.

In recent years, a new few methods have been proposed to

transform a single time series into a complex network, so that the

dynamics of the process can be understood by investigating the

topological properties of the network [1–6]. Essentially, this is a

transformation from the time domain to the network domain,

which allows for the dynamics of the time series to be studied via

the organization of the network [4]. It was found that time series

with different dynamics exhibit distinct topological structures.

Specifically, noisy periodic signals correspond to random net-

works, and chaotic time series generate networks that exhibit small

world and scale free features [1]. In brief, taking into account the

results of this research line, one could say that the current

literature suggests that network analysis can be used to distinguish

different dynamic regimes in time series and, perhaps more

importantly, that time series analysis can provide a powerful set of

tools that augment the traditional network analysis toolkit to

quantify networks in new and useful ways [5].

The distinction between stochastic and chaotic processes has

received much attention, becoming one of the most appealing

problems in time series analysis. Since stochastic and chaotic (low

dimensional deterministic) processes share several characteristics,

the discrimination between them is a challenging task. Time series

with complex structures are very frequent in both natural and
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artificial systems. The interest behind this distinction relies in

uncovering the cause of unpredictability governing these systems.

Much effort has being dedicated in the understanding of this

topic. It was thought, in the origins of chaotic dynamics, that

obtaining finite, non-integer values for fractal dimension was a

strong evidence of the presence of deterministic chaos, as

stochastic processes were thought to have an infinite value.

Osborne and Provenzale [7] observed for a stochastic process a

non-convergence in the correlation dimension (as a estimation of

fractal dimension). They showed that time series generated by

inverting power law spectra and random phases are random

fractal paths with finite Hausdorff dimension and, consequently,

with finite correlation dimension [7].

Among other methodologies to distinguish chaotic from

stochastic time series we can mention the work of Sugihara and

May [8] based on nonlinear forecasting in which they compare

predicted and actual trajectories and make tentative distinctions

between dynamical chaos and measurement errors. The accuracy

of nonlinear forecast diminishes for increasing prediction time-

intervals for a chaotic time series. This dependency is not found for

uncorrelated noises [8]. Kaplan and Glass [9, 10] observed that

the tangent to the trajectory generated by a deterministic system is

a function of the position in phase space, consequently, all the

tangents to a trajectory in a given phase space region will display

similar orientation. As stochastic dynamics do not exhibit this

behavior, Kaplan and Glass proposed a test based on these

observations. Kantz and co-workers [11, 12] recently analyzed the

behavior of entropy quantifiers as a function of the coarse-graining

resolution, and applied their ideas to distinguish between chaos

and noise. Their methodology can be considered a generalization

of the Grassberger and Procaccia method [13] regarding the

estimation of the correlation dimension and the consideration of

finite values as signatures of deterministic behavior.

Chaotic systems display sensitivity to initial conditions which

manifests instability everywhere in the phase space and leads to

non-periodic motion (chaotic time series). They display long-term

unpredictability despite the deterministic character of the temporal

trajectory. In a system undergoing chaotic motion, two neighbor-

ing points in the phase space move away exponentially rapidly. Let

x1(t) and x2(t) be two such points, located within a ball of radius

R at time t. Further, assume that these two points cannot be

resolved within the ball due to poor instrumental resolution. At

some later time t’ the distance between the points will typically

grow to Dx1(t’){x2(t’)D & Dx1(t){x2(t)Dexp(LDt’{tD), with Lw0
for a chaotic dynamics, being L the biggest Lyapunov exponent.

When this distance at time t’ exceeds R, the points become

experimentally distinguishable. This implies that instability reveals

some information about the phase space population that was not

available at earlier times [14]. The above considerations allow to

think chaos as an information source. Moreover, the associated

rate of generated information can be formulated in a precise way

in terms of Kolmogorov-Sinai’s entropy [15, 16].

In more recent works, the use of quantifiers based on

Information Theory has led to interesting results regarding the

characteristics of nonlinear chaotic dynamics, improving the

understanding of their associated time series. In particular, the

combination of the statistical complexity [17–20] and the

normalized Shannon entropy, allows for a good distinction

between stochastic and chaotic dynamics when incorporating

time causal information via the Bandt and Pompe methodology

(the permutation probability distribution function (PDF) associated

to a time series) [21, 22]. This combination generates a graphic

tool called the causality entropy-complexity plane that was also

useful in characterizing dynamical systems from different fields (see

[22] and references therein).

The statistical complexity is defined as the product

C½P�~(S½P�=S½Pe�):Q½P,Pe� [17] in which, S½P�=S½Pe� represents

the normalized Shannon entropy, Q½P,Pe�~Q0
:J S½P,Pe� the

disequilibrium given in terms of the Jensen-Shannon divergence

J S between the PDF associated to the present state of the system

(P) and the uniform PDF (Pe), and Q0 a normalization constant. In

the same fashion, Olivares et al. [23, 24] propose the use of two

information quantifiers as measures, namely, the normalized

Shannon entropy and the Fisher information combined in the so-

called the causality Shannon-Fisher plane, finding that stochastic

and chaotic dynamics are mapped into different locations.

A close related topic to the Bandt and Pompe permutation PDF

is the existence of forbidden patterns. Amigó et al. [20, 25–28]

showed that in the case of deterministic chaotic one-dimensional

maps not all the possible ordinal patterns can be effectively

materialized into orbits, which makes them ‘‘forbidden.’’ In

general, one should expect that high-dimensional chaotic dynam-

ical systems (maps) will exhibit forbidden patterns. Indeed, the

existence of these forbidden ordinal patterns becomes a persistent

fact that can be regarded as a ‘‘new’’ dynamical property. Thus,

for a fixed pattern-length the number of forbidden patterns of a

time series (unobserved patterns) is independent of the series’

length. This independence is not shared by other properties of the

series, such as proximity and correlation, which die out with time

[26, 28].

Stochastic processes could also display forbidden patterns

[18, 19]. However, in the case of either uncorrelated (white noise)

or correlated stochastic processes (noise with power-law spectrum

f {k with kw0, fractional Brownian motion and fractional

Gaussian noise) it can be numerically ascertained that no
forbidden patterns emerge, for a sufficiently time series length.

For time series generated by unconstrained stochastic processes
(uncorrelated processes) every ordinal pattern has the same

probability of appearance [25–28]. Indeed, if the data set is long

enough, all ordinal patterns will eventually appear. In this case, as

the number of observations increases, the associated PDF becomes

uniform, and the number of observed patterns will depend only on

the time series length.

For correlated stochastic processes, the probability of observing

a specific individual pattern depends not only on the time series

length, but also on the correlation structure [29]. Not observing an

ordinal pattern does not qualify it as ‘‘forbidden’’, only as

‘‘missing’’, and this could be due to the time series finite length.

A similar observation also holds for the case of real data that

always possess a stochastic component due to the omnipresence of

dynamical noise [30–32]. Thus, ‘‘missing ordinal patterns’’ could

be either related to stochastic processes (correlated or uncorrelat-

ed) or to deterministic noisy processes (always the case for

observational time series).

In particular, Rosso and co-workers recently showed [20] that

even when the presence of forbidden patterns is a characteristic of

chaotic dynamics, a minimum pattern-length is needed to detect

their presence. They also showed that the number of forbidden

patterns, if they exist, exhibits an exponential behavior with

respect to the pattern-length D, as opposed to the super-

exponential behavior described by Amigó and coworkers, valid

only for the case D?? [26, 28]. Per contra, in the case of

quantifiers evaluated making use of the Bandt and Pompe PDF, a

specific behavior emerges in the case of chaotic dynamics that

provides a more ‘‘robust’’ distinction between deterministic and

stochastic dynamics [17–20]. We summarize the learned experi-

ence with the use of quantifiers derived from Information Theory,
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for characterization and distinction between chaotic and stochastic

time series, as the inclusion of the time causality is one of the most
important features to consider.

The use of Visibility Graphs (VG) introduced by Lacasa and co-

workers [33], a method that transform a time series into a graph,

has also been used with this purpose. Specifically, HVGs, a

geometrical simplification of VGs, which is also computationally

faster, was applied in the classification and characterization of

periodic, chaotic, and onset of chaos dynamics [34, 35].

This methodology also incorporates in a natural way the time

causality, which is a fundamental component in constructing and

assessing Information Theory quantifiers able to distinguish chaos

from noise.

Lacasa and Toral [36] studied the discrimination between

chaotic, uncorrelated and correlated stochastic time series by using

HVG. They conjecture that the node degree distribution of these

systems follows an exponential functional of the form

P(k)*exp({lk), in which l is a positive parameter and k the

node degree. They computed analytically the HVG-PDF for the

case of uncorrelated noise (white noise) [37], and found the

corresponding parameter value lc~ln(3=2). Moreover, they

hypothesized that this value corresponds to a central value that

separates correlated stochastic (lwlc) from chaotic dynamics

(lvlc).

Even though the methodology works for several chaotic and

stochastic systems, we have found several examples for which

results diverge from the ones expected.

In this work, we present a methodology able to discriminate

between chaotic and stochastic (uncorrelated and correlated) time

series by using the HVG methodology together with Information

Theory quantifiers. A total of 33 systems are considered; the 27
chaotic maps described by Sprott [38], the Schuster map [39], 2

chaotic flows (Lorenz and Rössler chaotic systems) and noises with

f {k, k§0 power spectrum (PS) and stochastic time series

generated by fractional Brownian motion (fBm) and fractional

Gaussian noise (fGn) [17].

Following Olivares et al. [23, 24] we based our analysis on the

so-called Shannon-Fisher information plane (S|F ) that captures

both global and local features of the system’s dynamics. Its

horizontal and vertical axis are functionals of the pertinent

probability distribution, namely, the normalized Shannon entropy

(S) and the normalized Fisher Information measure (F ). We

evaluate these quantifiers for the time series using as PDF the node

degree distribution obtained via the horizontal visibility graph. We

show that the Shannon-Fisher information plane is able to

efficiently represent the different nature of the systems in a planar

representation, as well as to distinguish between the different

degrees of correlation structures.

As for the organization of this work, the forthcoming Section

enumerates and describes the chaotic maps, the chaotic flows, and

the stochastic processes considered. Section describes the Hori-

zontal Visibility Graph algorithm and discusses the characteriza-

tion of the HVG-PDF from a statistical point of view, as well as the

methodology implemented in [36] based on the parameter l. In

Section the basis on the Shannon-Fisher plane is detailed, and

finally, Section presents our results and discussions. Section 0

concludes the article.

Materials and Methods

Chaotic maps, chaotic flows and stochastic processes
Chaotic maps. In the present work we consider 27 chaotic

maps described by Sprott in his book [38] and the Schuster Maps

[39] (see Figures S1-S3 in File S1), grouped as follows:

noninvertible maps: (1) Logistic map [40]; (2) Sine map

[41]; (3) Tent map [42]; (4) Linear congruential generator [43]; (5)

Cubic map [44]; (6) Ricker’s population model [45]; (7) Gauss

map [46]; (8) Cusp map [47]; (9) Pinchers map [48]; (10) Spence

map [49]; (11) Sine-circle map [50].

dissipative maps: (12) Hénon map [51]; (13) Lozi map [52];

(14) Delayed logistic map [53]; (15) Tinkerbell map [54]; (16)

Burgers’ map [55]; (17) Holmes cubic map [56]; (18) Dissipative

standard map [57]; (19) Ikeda map [58]; (20) Sinai map [59]; (21)

Discrete predator-prey map [60].

conservative maps: (22) Chirikov standard map [61]; (23)

Hénon area-preserving quadratic map [62]; (24) Arnold’s cat map

[63]; (25) Gingerbreadman map [64]; (26) Chaotic web map [65];

(27) Lorenz three-dimensional chaotic map [66].

We also analyze the Schuster map, a class introduced by

Schuster and co-workers [39] that exhibits intermittent signals

with chaotic bursts and f {z power spectrum (PS). It is defined as:

xnz1~(xnzxz
n) mod 1 : ð1Þ

As the parameter z increases, the laminar zone increases in size

and the chaotic bursts are less frequent. To generate these maps

we use random initial conditions in the interval (0,1) and we

consider z[f1:25,1:50,1:75,2:00g.
For noninvertible, dissipative and conservative maps we use the

initial conditions and parameter-values detailed by Sprott. The

corresponding initial values are given in the basin of attraction for

noninvertible maps, near the attractor for dissipative maps, and in

the chaotic sea for conservative maps [38]. In the generation

process N iterations were considered after discarding the first 105.

In the case of multi-dimensional maps, we consider all map

coordinates. A complete description of these maps can be found in

File S1.

Chaotic flows. Time series generated by chaotic flows

(integration of continuous nonlinear ordinal differential equations)

can be also considered. In opposition to the case of chaotic maps,

where the sampling period is t~1, the corresponding value of t
requires careful consideration. a) If t is too small, little information

gain accrues between successive sampled values (the values in the

corresponding time series will be almost linearly dependent), a

redundancy effect [67], implying i.e., that the normalized

permutation entropy values H(BP) (normalized Shannon entropy

evaluated with Bandt-Pompe PDF) ‘‘moves’’ to regions with

H (BP)?0. b) If t is too large, successive sampled values may

became unrelated, an irrelevance effect [67]. The normalized

permutation entropy values shifts to H (BP)?1 zones. In conse-

quence, time series representative of chaotic flows (chaotic

sampled attractors) must be sampled at a specific time tM ,

characteristic of the dynamics. Such tM will be the result of an

optimal tradeoff between redundancy and irrelevance effects

previously mentioned. Two different methodologies based on

properties of Information Theory quantifiers evaluated with

Bandt-Pompe PDF, have been proposed by Rosso and coworkers.

The first one is based on the sample period which maximizes the

permutation statistical complexity [68], and the second one, is

based on variation of the embedding time used on the attractor’s

reconstruction which, in time, gives origin to permutation patterns

[69].

An alternative is simplifying the analysis of the corresponding

nonlinear differential equations by reducing it to an iterated map

of some kind, for instance, a Poincaré map or the time series

Distinguishing Noise from Chaos
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formed by the minimum values of one variable of the chaotic

dynamical system. In the present work, we follow the last option

and consider the case of minimum Lorenz map [70]. Our results

refer to two paradigmatic chaotic systems in a 3-dimensional state

space, namely,

The Lorenz chaotic attractor [71].

_xx~s(y{x)

_yy~x(r{z){y ,

_zz~xy{bz

8><>: ð2Þ

where the pertinent parameters are s~10, b~8=3, and r~28,

corresponding to a chaotic attractor. The corresponding Lyapu-

nov exponents (base-e) are l~0:9056, 0, {14:5723 [38].

The Rössler chaotic attractor [72].

_xx~{y{z

_yy~xzay ,

_zz~bzz(x{c)

8><>: ð3Þ

where the parameters used here are a~b~0:2 and c~5:7,

corresponding to a chaotic attractor. The corresponding Lyapu-

nov exponents (base-e) are l~0:0714, 0, {5:3943 [38].

The corresponding Lorenz minimum map for both chaotic

Lorenz and Rössler systems were obtained by integration of the

corresponding nonlinear ordinary differential equations (eq. (2)

and eq. (3)) using a fourth-order Runge-Kutta method with

adaptive stepsize control [73] and integration steps D~0:0001
(Lorenz system) and D~0:001 (Rössler system) respectively, with

109 iterations. The minimum values for an orbit with initial value

x(0)~y(0)~z(0)~1 were determined. The first 5:104 (Lorenz)

and 104 (Rössler) iterations were discharged as transitory. In this

way, time series corresponding to the minimum values of X -

coordinate with at least 105 data, were generated.

Stochastic processes. The following classical stochastic

processes are considered in this work:

Noises with f {k power spectrum: These noises are

generated as follows [74],

1) By using the Mersenne twister generator [75], the MATLAB

RAND function is used to produce pseudo random numbers

in the interval ({0:5,0:5) with an almost flat power spectrum

(PS), uniform PDF, and zero mean value.

2) The Fast Fourier Transform (FFT) y1
k of the time series is

obtained and multiplied by f {k=2 (kw0), yielding y2
k;

3) y2
k is symmetrized so as to obtain a real function. The

pertinent inverse FFT is obtained after rounding off and

truncation. The ensuing time series xi has the desired power-

spectrum properties and, by construction, is representative of

non-Gaussian noises. In this work we consider noises in the

range 0ƒkƒ2:5, with Dk~0:25.

Fractional Brownian motion (fBm) and fractional
Gaussian noise (fGn): fBm is the only family of processes

which is Gaussian, self-similar, and endowed with stationary

increments (see Ref. [76] and references therein). The normalized

family of these Gaussian processes, fBH(t),tw0g, has the

following properties: i) BH(0)~0 almost surely, ii) ½BH(t)�~0
(zero mean), and iii) covariance given by

½BH(t)BH(s)�~(t2Hzs2H{Dt{sD2H)=2 , ð4Þ

for s,t[ : Here ½:� refers to the mean. The power exponent

0vHv1 is commonly known as the Hurst parameter or Hurst

Figure 1. Horizontal Visibility Graph method applied to the time series X (t). P(k) denotes the node degree distribution of the obtained
graph (HVG-PDF).
doi:10.1371/journal.pone.0108004.g001
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exponent. These processes exhibit memory for any Hurst

parameter except for H~1=2, as one realizes from Eq. (4). The

H~1=2 case corresponds to classical Brownian motion and

successive motion-increments are as likely to have the same sign as

the opposite (there is no correlation among them). Thus, Hurst’s

parameter defines two distinct regions in the interval (0,1). When

Hw1=2, consecutive increments tend to have the same sign so

that these processes are persistent. On the contrary, for Hv1=2,

consecutive increments are more likely to have opposite signs anti-
persistent.

Let us introduce the quantity fWH(t),tw0g (fBm-‘‘incre-

ments’’)

WH(t)~BH(tz1){BH(t) , ð5Þ

so as to express our Gaussian noise in the fashion

r(k)~ ½WH(t)WH(tzk)�

~
1

2
(kz1)2H{2k2HzDk{1D2H
� �

, kw0 :
ð6Þ

Note that for H~1=2 all correlations at nonzero lags vanish

and fW 1=2(t),tw0g represents white Gaussian noise.

The fBm and fGn are continuous but non-differentiable

processes (in the classical sense). As non-stationary processes, they

do not possess a spectrum defined in the usual sense; however, it is

possible to define a generalized power spectrum of the form:

W! Df D{h , ð7Þ

Figure 2. Confidence intervals for l values for Noninvertible, Dissipative, Conservative and Schuster Chaotic Maps. The values were
obtained following the methodology proposed by Lacasa et al.. Symmetric confidence intervals at the 95% confidence level were obtained for the l
parameter assuming the Gaussian model, a linear structure for the regression and independent zero-mean errors. The horizontal line represents the
value of lc corresponding to white noise (uncorrelated stochastic dynamics). The list of names for each map is the same given in Sec.. Full circles
(blue) are in agreement with Lacassa and Toral [36] proposal rule. Empty circles (red) not.
doi:10.1371/journal.pone.0108004.g002
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with h:a~2Hz1, and 1vav3 for fBm and; h:b~2H{1,

and {1vbv1, for fGn.

We use the Matlab function ‘‘wfbm’’ that returns a fractional

Brownian motion signal with a Hurst parameter H (0vHv1)
and length N for the generation the fBm and fGn time series. The

algorithm was proposed by Abry and Sellan [77, 78]. In this work

we consider noises in the range 0:1ƒHƒ0:9.

Noise contamination. We attempt to distinguish between

stochastic and chaotic dynamics by recourse to an appropriate

representation whose starring role is played by quantifiers based in

Information Theory combined with Horizontal Visibility Graphs.

We deal with well-known models that generate time series

according to prespecified rules. This is to be contrasted with the

situation posed by real data that always possess a stochastic

component due to omnipresent dynamical noise [30–32]. Indeed,

Wold proved [30] that any (stationary) time series can be

decomposed into two different parts. The first (deterministic) part

can be exactly described by a linear combination of its own past.

The second part is a moving average component of finite order.

Hence it may seem superfluous to ask whether a time series

generated by natural processes is either deterministic, chaotic, or

stochastic. However, having in mind Wold’s theorem [31, 32] it

makes sense to ask, with respect to the deterministic part

(predictable from the past), whether (i) it is dominant vis-à-vis

the unpredictable stochastic part, or (ii) it is of a regular or chaotic

nature.

The logistic map constitutes a canonic example, often employed

to illustrate new concepts and/or methods for the analysis of

dynamical systems. Here we will use the logistic map (full chaotic

behavior, r~4) with additive white noise (observational noise) in

order to exemplify the behavior of noise contamination over the

Information Theory quantifiers evaluated with the PDF-HVG.

Figure 3. Parameter l values of HVG-PDF P(k) for fBm, fGn and noise with f {k power spectrum time series with total length of
N~105 data. The l values were obtained following the methodology proposed by Lacasa et al.: from the graph ln½P(k)� versus k, the l parameter
was computed by adjusting using the least square method, a straight line being l its slope. The linear scaling region considered in all cases is
3ƒkƒ20, or 3ƒkƒkmax (if kmaxƒ20). Symmetric confidence intervals at the 95% confidence level were obtained for the l parameter assuming the
Gaussian model, a linear structure for the regression and independent zero-mean errors. The horizontal line represents the value of lc corresponding
to white noise (uncorrelated stochastic dynamics) Full circles (blue) are in agreement with Lacassa and Toral [36] proposal rule. Empty circles (red)
not.
doi:10.1371/journal.pone.0108004.g003
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The logistic map [38] is a polynomial mapping of degree 2,

F : xn?xnz1, described by the ecologically motivated dissipative

system represented by the first-order difference equation

xnz1~r:xn
:(1{xn) , ð8Þ

with 0ƒxnƒ1 and 0ƒrƒ4.

Let g be the observational white noise. We generated it by using

the Mersenne twister generator [75] through the MATLAB RAND
function, which produces pseudo random numbers in the interval

({0:5,0:5) with an almost flat power spectrum (PS), uniform PDF,

and zero mean value. We consider time series of the form

S~fSn,n~1, . . . ,Ng generated by the discrete system:

Sn~xnzA:gn , ð9Þ

in which xn is given by the full chaotic logistic map, and

gn[({0:5,0:5) is the additive noise with amplitude A. We consider

time series with N~105 data and noise amplitudes in the range

0ƒAƒ1 with DA~0:1.

Horizontal Visibility Graph
The horizontal visibility graph (HVG) [37] is a geometrical

simplification of the visibility graph (VG) [33] that maintains the

inherent characteristics of the transformed time series and

incorporates in a natural way its time causality.

By construction, the HVG transforms a time series into a graph,

in which each node corresponds to a point in the time series, will

be connected considering the following criterion:

Let fxi,i~1, . . . ,Ng, be a time series of N data. Two nodes i

and j in the graph are connected if it is possible to trace a

horizontal line in the time series linking xi and xj not intersecting

intermediate data height, fulfilling: xi,xjwxn for all ivnvj.

Figure 4. l-value determination: examples of analyzed dynamical systems where a good linear scaling region was found. For the
Holmes cubic map (X ), however, even having a good fitting, the l-value obtained is greater than lc which not satisfied the chaotic distinction
suggested by Lacasa and Toral [36]. In all cases, time series with N~105 are considered, and linear scaling regions are defined by 3ƒkƒ25 for
chaotic and 3ƒkƒ20 for stochastic time series.
doi:10.1371/journal.pone.0108004.g004
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Note that the HVG preserves the time causality of the original

series where each node sees at least its nearest neighbors. Another

important feature of the HVG is the invariance under affine

transformations, as its visibility is not modified under rescaling of

horizontal and vertical axes, as well as under horizontal and

vertical translations. Some other interesting properties are

discussed in [37, 79]. The last work focus on how some topological

properties of the HVG transformed from Fractional Brownian

motion change depending on the different values of the Hurst

exponent. An example of a time series and its associated node

degree distribution based on HVG is given in Figure 1.

The l rule. Lacassa and Toral [36] propose that chaotic and

stochastic time series map into a graph with an exponential node

degree distribution P(k)*exp({lk). The l parameter is

computed by adjusting, using the least square method, a straight

line being l its slope. The linear scaling region considered by

Lacassa and Toral is 3ƒkƒ20 or 3ƒkƒkmax (if kmaxƒ20) for

stochastic processes; and 3ƒkƒ25 or 3ƒkƒkmax (if kmaxƒ25)

for chaotic ones. The parameter l characterizes chaotic processes

when lvln(3=2), uncorrelated noises for l~ln(3=2) and

correlated noises when lwln(3=2).

In the same fashion, we have computed the node degree

distribution P(k) of the HVG for all the systems described in

Section for series of 105 data length. Symmetric confidence

intervals at the 95% confidence level were obtained assuming the

Gaussian model, a linear structure for the regression and

independent zero-mean errors. They will be denoted between

brackets after the point estimation of l. The results are shown in

Figures 2 and 3 for all studied chaotic maps and stochastic

dynamics, respectively. For the chaotic flows we obtain

l~0:292 ½0:267; 0:317� and l~0:412 ½0:385; 0:439� for the

Lorenz system (coordinate X) and Rössler system (coordinate X),

respectively. It is possible to see from these figures that several

chaotic and stochastic systems follow the above mentioned rule;

however, we have found others that do not, like the Rössler

chaotic system (coordinate X). Examples of chaotic maps for

which l is larger than lc~ln3=2&0:405 (see Fig. 2 open circles)

correspond to: (5) cubic map, (9) Pinchers map, (10) Spence map,

(11) sine-circle map, (14) delay logistic map, (15) Tinkerbell map

(X), (16) Burger’s map (Y), (17) Holmes cubic map, (19) Ikeda map

(Y) (21) discrete predator-prey map (Y), (23) Hénon area-

preserving quadratic map, (26) chaotic web map, (27) Lorenz

three-dimensional chaotic map, (see also Table S1 in File S1).

Stochastic processes for which l is smaller than lc (see Fig. 3 open

circles) correspond to fGn with {0:8ƒbƒ{0:4.

Considering the case of the logistic map with r~4 (fully

developed chaotic dynamics) contaminated with additive noise

(noises with uniform PDF and different amplitudes, 0ƒAƒ1)– see

Section, the parameter l increases between l~0:345 for A~0:1
to l~0:379 for A~1:0, limited for the values l~0:285 for A~0
(logistic map) and l~0:407 for pure noise. One is able to

differentiate between chaotic dynamics contaminated with noise,

and pure stochastic dynamics.

Some important issues to be discussed are:

Scaling zone: Several systems present a well defined linear

scaling region allowing a good linear fitting to obtain l. Examples

are the Logistic map, Holmes cubic map (X), a k-noise with k~0
and a fBm with b~0 presented in Figure 4. However, we must

point out that the fact of having a well scaling region does not

guarantee the satisfaction of the l rule. See for instance the

Holmes cubic map (X) that present a clear linear scaling region,

however l~0:443 ½0:418; 0:469�wlc, contradicting the hypothe-

sis.

Another important point is the selection of the scaling zone, as

the inclusion or exclusion of a few points in the extremes of the

PDF may drastically change the l value. Figure 5 shows the effect

of selecting different scaling zones for a stochastic process with

f {1:75 PS . If the scaling zone is defined in the node degree

interval 3ƒkƒ14, l~0:803 ½0:666; 0:941�, however, if the

scaling zone is redefined for the interval 7ƒkƒ12,

l~0:966 ½0:797; 1:136�, which represent a variation of 16:3%.

Heavytailedness: The definition of an unique linear scaling

zone is a difficult task for systems with a heavy tailed PDF. Note

that, when defining a scaling zone, important information

contained in the tails may be lost. Examples of systems with

heavy tailed PDFs are the Cusp and the Schuster maps (see Fig. 6).

Nonexponential behavior: Some systems present PDFs with

no linear scaling zone, in consequence, the hypothesis of an

exponential behavior cannot be confirmed. See for instance, the

Tinkerbell map (Y) and the Burger’s map (X) in Fig. 6.

In Table S1 of File S1 readers can find the l values with the

corresponding confidence intervals, the coefficient of determina-

tion R2, as well all the corresponding plots for all the dynamical

systems analyzed in this work (Figures S4-S12).

Skewness and kurtosis. Given a one-dimensional probabil-

ity distribution f (x) with x[D5 , the usual spread measure is the

variance V ½f �~
Ð
D (x{SxT)2dx. The variance measures the

(quadratic) variability around the mean. This property makes

the variance (or its square root, the standard deviation) particularly

useful for smooth unimodal distributions. Other interesting

quantifiers based on higher moments order are the skewness (a

third order moment measure) and the kurtosis (which depends on

the fourth order moment). The skewness measures the asymmetry,

while the kurtosis describes the relative ‘‘peakedness’’ of the

density with respect to the Gaussian law. Kurtosis is a sign of

‘‘flattening’’ or ‘‘peakedness’’ of a distribution.

The usual skewness and kurtosis are of limited use and

interpretability when dealing with asymmetric distributions, as is

the case of the node degree distribution HVG-PDF P(k), which is

always non-negative.

Among the many alternatives available in the literature, for

skewness and kurtosis evaluation, Brys et al. [80] employ with

Figure 5. l-value determination in the case of time series
generated by stochastic dynamics with f {k power spectrum
with k~1,75. Time series with N~105 data. Two different linear
scaling zones: a) 3ƒkƒ14 given l~0:803½0:666; 0:941�; and b)
7ƒkƒ12 given l~0:966½0:797; 1:136�. Note that the slope of the
straight line change significantly.
doi:10.1371/journal.pone.0108004.g005
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Figure 6. Cases with bad l-value determination: a) Cusp map and Schuster map with z~2, the associated HVG-PDF present heavy
tail making difficult to define an unique linear scaling zone representative of all the data. b) Tinkerbell map (Y) and the Burger’s map (X)
for which it is impossible to define an unique linear scaling zone, and in consequence the hypothesis of an exponential behavior cannot be
confirmed. Time series with N~105 data are considered.
doi:10.1371/journal.pone.0108004.g006

Table 1. Dynamical systems and their statistical quantifiers skewness (bc1c1), kurtosis (bc2c2) evaluated for j~1=10 and %~1=100.

System bll bc1c1(j) bc2c2(j,%)

Exponential 1 0:465 2:091

White Noise ln 3=2&0:405 0:600 2:200

k~0 Noise 0:404½0:398; 0:409� 0:600 2:200

a~2 fBm 0:726½0:660; 0:791� 0:200 1:600

b~0 fGn 0:407½0:400; 0:414� 0:600 2:200

Logistic map 0:281½0:264; 0:298� 0:666 2:333

Cusp map 0:217½0:175; 0:259� 0:500 5:250

z~1:25 Schuster 0:387½0:362; 0:412� 0:600 2

z~2 Schuster 0:252½0:196; 0:308� {1 13

bll is the obtained parameter value (with confidence value interval) of exponential functional form proposed by Lacasa and Toral for the HVG-PDF [36]). Time series with

N~105 data are considered.
doi:10.1371/journal.pone.0108004.t001
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success the information provided by the quantiles. In particular,

we will see that an alternative measure of kurtosis is able to

describe the different heavytailedness of the observed node degree

distribution HVG-PDF.

Consider x~(x1, � � � ,xn) a sample of n real values. The sample

quantile of order 0vgv1 is q(g)~ minfx[ : bFF (x)§gg andbFF (x)~n{1#fxi : xiƒxg, where #H denotes the cardinality of

the set H, is the sample cumulative distribution function also

known as empirical function. Quantile-based measures of skewness

and kurtosis can be defined as

bc1c1(j)~
q(1{j)zq(j){2q(1=2)

q(1{j){q(j)
, ð10Þ

and

bc2c2(j,%)~
q(1{%){q(%)

q(1{j){q(j)
ð11Þ

respectively, where 0vjv%v1 are arbitrary quantiles.

The values for two reference distributions were computed

analytically with j~1=10 and %~1=100. For the standard

exponential distribution with probability density function

P(k)~e{k, kw0 they are:

c1(1=10)~
2 log (1=2){ log (1=10){ log (9=10)

log (9=10){ log (1=10)
&0:465 , ð12Þ

and

c2(1=10,1=100)~
log (99=100){ log (1=100)

log (9=10){ log (1=10)
&2:091 , ð13Þ

and for the node degree distribution under white noise, whose

probability function is P(k)~3{1(2=3)k{2, k§2 [33, 36], they

are c1(1=10)~3=5~0:6 and c2(1=10, 1=100)~11=5~2:2.

Table 1 shows the values of lambda (bll), skewness (bc1c1) and

kurtosis (bc2c2) for several noises and chaotic maps.

It is worth noticing that several chaotic maps present high

kurtosis values indicating a heavy tailed PDF, showing the

Figure 7. Examples of HVG-PDF for some chaotic and stochastic systems. Only 0ƒkƒ16 are displayed. Note that the corresponding cut-
offs (kmax) are also shown. The length of the time series is N~100,000.
doi:10.1371/journal.pone.0108004.g007
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importance of using a quantifier that considers the entire available

data. Fig. 7 displays examples of HVG-PDF of several chaotic and

stochastic systems. Note that, for some systems, the HVG-PDFs do

not present an exponential behavior. Readers can find the results

for all the systems considered in Table S1 of File S1.

The Shannon-Fisher information plane
To avoid the subjectivity of choosing the scaling zone in which

the parameter l is computed and, consequently, the sensitivity of

this methodology, we propose a tool in which no information is

lost, as the entire PDF is used and the relation between global and

local features of the systems is captured. The Shannon-Fisher

information plane (S|F ) firstly introduced by Vignat and

Bercher [81] is a planar representation in which the horizontal

and vertical axes are functionals of the pertinent probability

distribution, namely, the Shannon Entropy S and the Fisher

Information measure F , respectively. This tool is a convenient

way to represent in the same information plane global and local

aspects of the PDFs associated to the studied system. In this work

the PDFs are obtained through the horizontal visibility graph

methodology [33].

Given a continuous probability distribution function (PDF) f (x)

with x[D5 and
Ð
D f (x)dx~1, its Shannon Entropy [82] is

S½f �~{

ð
D

f ln f dx , ð14Þ

a measure of ‘‘global’’ character that it is not too sensitive to strong

changes in the distribution taking place on small regions of the

support D.

Such is not the case with Fisher’s Information Measure (FIM) F
[83–85], which constitutes a measure of the gradient content of the

distribution f (x), thus being quite sensitive even to tiny localized

perturbations. It reads

F½f �~
ð
D

1

f (x)

df (x)

dx

� �2

dx~4

ð
D

dy(x)

dx

� �2

: ð15Þ

Figure 8. Study of the effect of the series length on the Information Theory quantifiers. The dynamical systems here considered are the
Logistic map and noises with f {k power spectrum, for k~0,1 and 2.
doi:10.1371/journal.pone.0108004.g008
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FIM can be variously interpreted as a measure of the ability to

estimate a parameter, as the amount of information that can be

extracted from a set of measurements, and also as a measure of the

state of disorder of a system or phenomenon [85]. In the previous

definition of FIM (Eq. (15)) the division by f (x) is not convenient if

f (x) becomes too small to be adequately computed. Such issue is

avoided using probability amplitudes y:
ffiffiffi
f

p
[84, 85]. The

gradient operator significantly influences the contribution of

minute local f {variations to FIM’s value. Accordingly, this

quantifier is called a ‘‘local’’ one [85].

Let now P~fpi; i~1, . . . ,Ng be a discrete probability distri-

bution, with N the number of possible states of the system under

study. The concomitant problem of information-loss due to

discretization has been thoroughly studied (see, for instance,

[86–88], and references therein) and, in particular, it entails the

loss of FIM’s shift-invariance, which is of no importance for our

present purposes [23, 24]. In the discrete case, we define a

‘‘normalized’’ Shannon entropy as

H½P�~S½P�=Smax~ {
XN

i~1

piln pi

( )
=Smax , ð16Þ

where the denominator Smax~S½Pe�~ln N is the Shannon

entropy attained by a uniform probability distribution Pe~

fpi~1=N,Vi~1, . . . ,Ng. For the FIM we take the expression in

terms of real probability amplitudes as starting point, then a discrete

normalized FIM convenient for our present purposes, is given by

F½P�~F0

XN{1

i~1

½(piz1)1=2{(pi)
1=2�2 : ð17Þ

Figure 9. Representation on the Shannon-Fisher plane, S|F ,
for all dynamical systems. The quantifiers were evaluated with the
HVG-PDF from time series length 105. The stars (?) represent the
obtained values for chaotic flows (RS: Rössler system (X-coordinate),
and LS: Lorenz system (X-coordinate)).
doi:10.1371/journal.pone.0108004.g009

Figure 11. Shannon-Fisher plane, S|F zoom, see Fig. 9.
doi:10.1371/journal.pone.0108004.g011

Figure 10. Shannon-Fisher plane, S|F zoom, see Fig. 9.
doi:10.1371/journal.pone.0108004.g010

Figure 12. Shannon-Fisher plane, S|F , for the logistic map
(r~4) contaminated with additive noise with uniform PDF and
amplitude A. Time series with N~105 data are considered.
doi:10.1371/journal.pone.0108004.g012
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It has been extensively discussed that this discretization is the

best behaved in a discrete environment [89]. Here the normal-

ization constant F0 Reads

F0~
1 if pi� ~ 1 for i� ~ 1 or i� ~ N and pi ~ 0 V i 6~ i�

1=2 otherwise :

�
ð18Þ

Results and Discussion

In order to study the stability of the forthcoming results, we first

analyze the dependency of the Information Theory quantifiers

with the size of the time series. For this experiment we consider

time series with different length sizes, varying from 30,000 to

500,000 values. As it can be seen in Figure 8, the Fisher

Information and the Shannon entropy rapidly converge to stable

values. For example, for the cases depicted in Figure 8, the order

of magnitude of the percentage variations of the mean value for

times series with N~100,000 and N~500,000 are between 10{4

and 10{5. For that reason all experiments consider time series

with 100,000 values. The Fisher Information and the Shannon

Entropy are computed for all systems presented in Section. Note

that, as expected, bi-dimensional maps presenting one delayed

coordinate (i.e.: delay logistic map), have identical quantifier

values for both time series coordinates.

Results are depicted in Figures 9, 10 and 11. The Shannon

entropy values are normalized with its maximum value for

N~100,000, that corresponds to the entropy of the gaussian white

noise (fGn for b~0, S½Pwgn �). In this work we change the classical

ln N normalization of the Shannon entropy to facilitate the

comparison of results when using different time-series lengths. The

normalization through S½Pwgn � reaches stable values while the

normalization through ln N results in decreasing values as the

time-series length increases.

One interesting observation is the fact that the Fisher

Information (F ) decreases with the strength of correlation in

noises. The degree distribution corresponding to noises with lower

correlation presents high peaks as well as long tails, almost flat for

the white noise. As correlations get stronger, the peaks decrease

and tails get shorter. For the uncorrelated situation (white noise),

the strong contribution of the long and flat tail, even having the

highest peak, makes the shape of the distribution more uniform.

This effect can be seen in Figure 7 as well as in Table S1 for noises

with f {k power spectrum.

The statistical complexity, an Information theory quantifier

based on the relation between the normalized Shannon entropy

and the Jensen-Shannon divergence, was previously used to

successfully distinguish stochastic from chaotic dynamics [17, 22].

However, when extracting the PDF of the system through HVG,

this quantifier presents poor results.

Graphs obtained by applying HVG present very short tail

distributions. Thus, when considering time series long enough to

capture the dynamics of the systems, the Jensen Shannon

divergence cannot clearly discriminate between different systems

degree distributions due to the high number of components with

pi~0. As a direct consequence, the statistical complexity will

convey limited new information. The use of the Fisher information

measure greatly complements the Shannon entropy as it brings

local insights of the degree distribution. Therefore, the S|F
plane allows us to map global and local information describing the

nature and similarities of the systems.

The Fisher Information is sensitive to small fluctuations. From

Eq. (17), it is possible to see that bigger differences in consecutive

pi values of the distribution P, result in higher values of F . In this

case, the higher peaks in the degree distributions, that correspond

to lower correlation values, represent the main contribution to F .

The extra terms present in the long tail, even contributing with

small values, still increase the value of F . For that reason, the

lowest value of F corresponds to the noise with strongest

correlation structure (fBm with a~2:8), see Figure 11. That is

not the case of the Shannon entropy S, which is not sensitive to

small fluctuations. The Shannon Entropy presents its highest value

for noises with the smallest correlation (white noises, gaussian and

non-gaussian) and, as correlation structures get stronger, S
decreases.

The planar localization in the Shannon-Fisher information

plane S|F , gives interesting information about the relation

between the systems. Noises appear to be organized as a frontier,

from which all chaotic maps concentrate. As it was previously

shown, the frontier is stable regarding the size of the times series

length.

Note that some chaotic maps are located nearby the noise

‘‘frontier’’ in the S|F plane (see Figure 11). These maps are: the

linear congruential generator (4), the dissipative standard map

(18), and the Sinai map (20). They present high S=Swgn values,

0:995ƒS=Swgnƒ1 and low F values, 0:17ƒFƒ0:19. This

planar localization can be understood, as these maps present a

stochastic like dynamical behavior when represented in a two

dimensional plane. However, when represented in higher dimen-

sional planes, planar structures appear denoting their chaotic

behavior.

The use of the S|F plane can shed light on the underlying

system’s structure. For example, the Schuster maps display a linear

behavior in the S|F plane when varying the z parameter. Wider

laminar regions (z~2:00) generate a greater number of nodes with

lower degree values. At the same time nodes located in the

extremes of a laminar region posses higher degree. As the

parameter z decreases, the laminar structures get thinner, reducing

the number of nodes with higher degree value. This fact positioned

the Schuster systems far from the frontier as z increases as can be

seen in Figure 9.

Figure 12 portrays the results obtained after an additive noise

contamination (noise with uniform PDF and with different

amplitudes, 0ƒAƒ1) to the logistic map with r~4 (fully

developed chaotic dynamics) – see Section – in the plane S|F .

It is easy to see how both quantifiers are able to capture the

increase of the noise amplitude, mapping the systems from the

original logistic map localization (A~0) towards the region of pure

noise when the noise amplitude increases without overlapping the

pure noise planar localization. In Table S1 in File S1 can be found

a detailed description of the results.

Conclusions

This work is divided in two parts; the former includes a

thorough numerical analysis to test Lacasa and Toral methodology

[36], for several chaotic, stochastic and noise-contaminated

systems. The latter presents a methodology based on the HVG

combined with Information Theory quantifiers.

The first analysis revealed that the use of the slope of the

logarithm of the degree distribution of the HVG obtained from the

systems time series, fails in properly divide their nature. The

method is highly sensitive to the selection of the scaling zone to

compute l, which is in some cases a non-trivial task. The non-

exponential behavior and the heavytailedness of the degree
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distribution make the method dependent to external adjustments.

Nevertheless, the HVG itself shows the ability to capture and

maintain the intrinsic features of the systems.

In the second part of this manuscript, we propose the use of the

Horizontal Visibility Graph in combination with the Shannon

entropy and the Fisher information measure as a methodology to

study dynamical systems. Several chaotic (maps and flows) and

correlated noises were considered for an exhaustive analysis. The

arrangement of the results in the S|F plane shows that this novel

tool is able to capture features that reveal the nature governing the

system. The S|F plane exposes the intrinsic features of a system

by positioning it in a planar representation, conveniently

combining global and local aspects of the PDF under study.

We have presented extensive numerical evidence and have

contrasted the characterization of deterministic chaotic, noisy-

stochastic dynamics, and chaotic systems contaminated with

additive noise of different amplitudes, as represented by time

series of finite length. Surprisingly enough, one just has to look at

the different planar locations of the two dynamical regimes. The

planar location is able to tell us whether we deal with chaotic or

stochastic time series.

We claim that the presented methodology can be applied to

systems of any dimension. However, the sampling time which

capture the correct chaotic dynamics and length of their

representative time-series merit a specific analysis for high

dimensional systems. Also, the analysis of noise contamination

requires a deep and thorough exploration including different types

of noises. Works in this direction are in progress.
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1 Considered chaotic systems and their parameters

1.1 Noninvertible maps

The nonivertible maps considered, their parameters, initial condition and the corresponding Lyapunov
exponent, are listed below (see Ref. Sprott (2003)). The Fig. 1 show Xn+1 versus Xn for these
one-dimensional maps.

• Logistic map :
Xn+1 = ρ Xn ( 1−Xn ) . (1)

Parameter value: ρ = 4; initial condition: X0 = 0.1; Lyapunov exponent: λ = ln 2 = 0.693147181 . . .
Ref: May (1976).

• Sine map :
Xn+1 = A sinπXn . (2)

Parameter value: A = 1; initial condition: X0 = 0.1; Lyapunov exponent: λ ' 0.689067.
Ref: Strogatz (1994).

• Tent map :
Xn+1 = A Min{ Xn, 1−Xn } . (3)

Parameter value: A = 2; initial condition: X0 = 1/
√

2; Lyapunov exponent: λ = ln |A| =
0.693147181 . . .
Ref: Devaney (1989).
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• Linear congruential generator :

Xn+1 = A Xn +B Xn ( Mod C ) . (4)

Parameter values: A = 7141, B = 54773, C = 259200; initial condition: X0 = 0; Lyapunov expo-
nent: λ = ln |A| = 8.873608101 . . .
Ref: Knuth (1997)

• Cubic map :
Xn+1 = A Xn ( 1−X2

n ) . (5)

Parameter value: A = 3; initial condition: X0 = 0.1; Lyapunov exponent: λ ' 1.0986122883.
Ref: Zeng et al. (1985).

• Ricker’s population model :
Xn+1 = A Xn e

−Xn . (6)

Parameter value: A = 20; initial condition: X0 = 0.1; Lyapunov exponent: λ ' 0.384846.
Ref: Ricker (1954).

• Gauss map :
Xn+1 = 1/Xn ( Mod 1 ) . (7)

Initial condition: X0 = 1; Lyapunov exponent: λ ' 2.373445.
Ref: van Wyk and Steeb (1997).

• Cusp map :
Xn+1 = 1−A

√
| Xn | . (8)

Parameter value: A = 2; initial condition: X0 = 0.5; Lyapunov exponent: λ = 0.5.
Ref: Beck and Schlögl (1995).

• Pinchers map :
Xn+1 = | tanhS ( Xn − C ) | . (9)

Parameter values: S = 2, C = 0.5; initial condition: X0 = 0; Lyapunov exponent: λ ' 0.467944.
Ref: Potapov and Ali (2000).

• Spence map :
Xn+1 = | lnXn | . (10)

Initial condition: X0 = 0.5; Lyapunov exponent: λ→∞.
Ref: Shaw (1981).

• Sine–circle map :

Xn+1 = Xn + Ω− K

2π
sin 2πXn ( Mod 1 ) . (11)

Parameter values: Ω = 0.5, K = 2; initial condition: X0 = 0.1; Lyapunov exponent: λ ' 0.353863.
Ref: Arnold (1965).
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1.2 Dissipative maps

The dissipative maps considered, their parameters, initial condition and the corresponding Lyapunov
exponents, are listed below (see Ref. Sprott (2003)). The Fig. 2 show Xn versus Yn for these two-
dimensional maps.

• Hénon map : {
Xn+1 = 1− a X2

n + b Yn
Yn+1 = Xn

. (12)

Parameter values: a = 1.4, b = 0.3; initial conditions: X0 = 0, Y0 = 0.9; Lyapunov exponents:
λ1 ' 0.41922, λ2 ' −1.62319.
Ref: Hénon (1976).

• Lozi map : {
Xn+1 = 1− a | Xn |+ b Yn
Yn+1 = Xn

. (13)

Parameter values: a = 1.7, b = 0.5; initial conditions: X0 = −0.1, Y0 = 0.1; Lyapunov exponents:
λ1 ' 0.47023, λ2 ' −1.16338.
Ref: Lozi (1978).

• Delayed logistic map : {
Xn+1 = A Xn ( 1− Yn )
Yn+1 = Xn

. (14)

Parameter values: A = 2.27; initial conditions: X0 = 0.001, Y0 = 0.001; Lyapunov exponents:
λ1 ' 0.18312, λ2 ' −1.24199.
Ref: Aronson et al. (1982).

• Tinkerbell map : {
Xn+1 = X2

n − Y 2
n + a Xn + b Yn

Yn+1 = 2 Xn Yn + c Xn + d Yn
. (15)

Parameter values: a = 0.9, b = −0.6, c = 2, d = 0.5; initial conditions: X0 = 0, Y0 = 0.5; Lyapunov
exponents: λ1 ' 0.18997, λ2 ' −0.52091.
Ref: Nusse and Yorke (1994).

• Burgers’ map : {
Xn+1 = a X2

n − Y 2
n

Yn+1 = b Yn +Xn Yn
. (16)

Parameter values: a = 0.75, b = 1.75; initial conditions: X0 = −0.1, Y0 = 0.1; Lyapunov exponents:
λ1 ' 0.12076, λ2 ' −0.22136.
Ref: Whitehead and Macdonald (1984).

• Holmes cubic map : {
Xn+1 = Yn
Yn+1 = −b Xn + d Yn − Y 3

n
. (17)



4

Parameter values: b = 0.2, d = 2.77; initial conditions: X0 = 1.6, Y0 = 0; Lyapunov exponents:
λ1 ' 0.59458, λ2 ' −2.20402.
Ref: Holmes (1979).

• Dissipative standard map :{
Xn+1 = Xn + Yn+1 ( Mod 2π )
Yn+1 = b Yn + k sin(Xn) ( Mod 2π )

. (18)

Parameter values: b = 0.1, k = 8.8; initial conditions: X0 = 0.1, Y0 = 0.1; Lyapunov exponents:
λ1 ' 1.46995, λ2 ' −3.77254.
Ref: Schmidt and Wang (1985).

• Ikeda map : {
Xn+1 = γ + µ ( Xn cosφ− Yn sinφ )
Yn+1 = µ ( Xn sinφ+ Yn cosφ )

, (19)

where φ = β − α / (1 +X2
n + Y 2

n ).
Parameter values: α = 6, β = 0.4, γ = 1, µ = 0.9; initial conditions: X0 = 0, Y0 = 0; Lyapunov
exponents: λ1 ' 0.50760, λ2 ' −0.71832.
Ref: Ikeda (1979).

• Sinai map : {
Xn+1 = Xn + Yn + δ cos 2π Yn ( Mod 1 )
Yn+1 = Xn + 2 Yn ( Mod 1 )

. (20)

Parameter value: δ = 0.1; initial conditions: X0 = 0.5, Y0 = 0.5; Lyapunov exponents: λ1 '
0.95946, λ2 ' −1.07714.
Ref: Sinai (1972).

• Discrete predator-prey map :{
Xn+1 = Xn exp[ r ( 1−Xn/K )− α Yn ] ( Prey )
Yn+1 = Xn [1− exp(−α Yn) ] ( Predator )

. (21)

Parameter value: r = 3, K = 1, α = 5; initial conditions: X0 = 0.5, Y0 = 0.5; Lyapunov exponents:
λ1 ' 0.19664, λ2 ' 0.03276.
Ref: Beddington et al. (1975).

1.3 Conservative maps

The conservative maps considered, their parameters, initial condition and the corresponding Lyapunov
exponents, are listed below (see Ref. Sprott (2003)). The Fig. 3 show Xn versus Yn for these two-(three-
)dimensional maps.

• Chirikov standard map : {
Xn+1 = Xn + Yn+1 ( Mod 2π )
Yn+1 = Yn + k sinXn ( Mod 2π )

. (22)
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Parameter value: k = 1; initial conditions: X0 = 0, Y0 = 6; Lyapunov exponents: λ1,2 ' ±0.10497.
Ref: Chirikov (1979).

• Hénon area–preserving quadratic map :{
Xn+1 = Xn cosα− ( Yn −X2

n ) sinα
Yn+1 = Xn sinα+ ( Yn −X2

n ) cosα
. (23)

Parameter value: cosα = 0.24; Initial conditions: X0 = 0.6, Y0 = 0.13; Lyapunov exponents:
λ1,2 ' ±0.00643.
Ref: Hénon (1969).

• Arnold’s cat map : {
Xn+1 = Xn + Yn ( Mod 1 )
Yn+1 = Xn + k Yn ( Mod 1 )

. (24)

Parameter value: k = 2; initial conditions: X0 = 0, Y0 = 1/
√

2; Lyapunov exponents: λ1,2 =
± ln[ 12 (3 +

√
5)] = ±0.96242365 . . .

Ref: Arnold’s and Avez (1968).

• Gingerbreadman map : {
Xn+1 = 1 + | Xn | − Yn
Yn+1 = Xn

. (25)

Initial conditions: X0 = 0.5, Y0 = 3.7; Lyapunov exponents: λ1,2 ' ±0.07339.
Ref: Devaney (1984).

• Chaotic web map : {
Xn+1 = Xn cosα− ( Yn + k sinXn ) sinα
Yn+1 = Xn sinα+ ( Yn + k sinXn ) cosα

. (26)

Parameter value: α = π/2, k = 1; initial conditions: X0 = 0, Y0 = 3; Lyapunov exponents:
λ1,2 ' ±0.04847.
Ref: Chernikov et al. (1988).

• Lorenz three–dimensional chaotic map : Xn+1 = Xn Yn − Zn

Yn+1 = Xn

Zn+1 = Yn

. (27)

Initial conditions: X0 = 0.5, Y0 = 0.5, Z0 = −1; Lyapunov exponents: λ1,2,3 ' 0.07456, 0,−0.07456.
Ref: Lorenz (1993).
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Figure 1. Graphical representation for the eleven noninvertible chaotic maps considered in the present
work. The graphs display Xn+1 versus Xn for the one-dimensional maps (See Sec. 1.1).
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Figure 2. Graphical representation for the ten dissipative chaotic maps considered in the present work.
The graphs display Yn versus Xn for the two-dimensional maps (See Sec. 1.2).
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Figure 3. Graphical representation for the six conservative chaotic maps considered in the present work.
The graphs display Yn versus Xn for the two (three)-dimensional maps (See Sec. 1.3).
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Figure 4. λ-value determination for the noninvertible chaotic maps. In all cases, time series with
N = 105 are considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25 or 3 ≤ κ ≤ κmin if
κmim < 25.
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Figure 5. λ-value determination for the dissipative chaotic maps. In all cases, time series with N = 105

are considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25 or 3 ≤ κ ≤ κmin if κmim < 25.
(Continued on next page.)
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Figure 5. λ-value determination for the dissipative chaotic maps. In all cases, time series with N = 105

are considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25 or 3 ≤ κ ≤ κmin if κmim < 25.
(Continued from previous page.)
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Figure 6. λ-value determination for the conservative chaotic maps. In all cases, time series with N = 105

are considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25 or 3 ≤ κ ≤ κmin if κmim < 25.
(Continued on next page.)
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Figure 6. λ-value determination for the conservative chaotic maps. In all cases, time series with N = 105

are considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25 or 3 ≤ κ ≤ κmin if κmim < 25.
(Continued from previous page.)
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Figure 7. λ-value determination for the Schuster maps. In all cases, time series with N = 105 are
considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25 or 3 ≤ κ ≤ κmin if κmim < 25.
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Figure 8. λ-value determination for the chaotic flows (Lorenz and Rössler systems). In all cases, time
series with N = 105 are considered, and linear scaling regions are defined by 3 ≤ κ ≤ 25.
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Figure 9. λ-value determination for the k-noise. In all cases, time series with N = 105 are considered,
and linear scaling regions are defined by 3 ≤ κ ≤ 20 or 3 ≤ κ ≤ κmin if κmim < 20.
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Figure 10. λ-value determination for the fBm noise. In all cases, time series with N = 105 are
considered, and linear scaling regions are defined by 3 ≤ κ ≤ 20 or 3 ≤ κ ≤ κmin if κmim < 20.
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Figure 11. λ-value determination for the fGn noise. In all cases, time series with N = 105 are considered,
and linear scaling regions are defined by 3 ≤ κ ≤ 20 or 3 ≤ κ ≤ κmin if κmim < 20.
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Figure 12. λ-value determination for the logistic map (ρ = 4) contaminated with additive noise (un-
correlated flat PDF) of amplitude 0 ≤ A ≤ 1 with step ∆A = 0.1. The corresponding determination for
pure noise is also included in the figure. In all cases, time series with N = 105 are considered, and linear
scaling regions are defined by 3 ≤ κ ≤ 25.
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Table 1. Obtained quantifier values for all systems studied: node cut-off kmax; skewness γ̂1(ξ); kurtosis γ̂2(ξ, %); λ parameter; LCL:
lower confidence interval value for parameter λ; UCL: upper confidence interval value for parameter λ; goodness of the fit of λ parameter
R2 ; Shannon entropy value S[P ]; Fisher information value F [P ]; normalized Shannon entropy value using white noise S/Swn; normalized
Shannon entropy value using white gaussian noise S/Swgn.

Systems kmax skewness kurtosis λ LCL UCL R2 S[P ] F [P ] S/Swn S/Swgn

Noninvertible maps
Logistic map 39 0.666 2.333 0.281 0.264 0.298 0.982 1.847 0.204 0.968 0.967
Sine map 49 0.666 2.500 0.265 0.244 0.287 0.968 1.805 0.210 0.945 0.945
Tent map 42 0.666 2.333 0.285 0.268 0.302 0.982 1.846 0.203 0.967 0.967
Lineal congruential generator 28 0.600 2.200 0.405 0.397 0.413 0.998 1.909 0.182 1.000 1.000
Cubic map 22 0.666 1.666 0.469 0.431 0.507 0.974 1.899 0.185 0.995 0.994
Ricker’s population model 27 0.714 1.714 0.387 0.350 0.425 0.955 1.824 0.292 0.955 0.955
Gauss map 30 0.600 2.200 0.382 0.365 0.398 0.992 1.902 0.212 0.996 0.996
Cusp map 1487 0.500 5.250 0.217 0.175 0.259 0.839 1.343 0.348 0.704 0.704
Pincher’s map 27 0.666 1.667 0.457 0.423 0.490 0.973 1.860 0.251 0.974 0.974
Spence map 26 0.666 1.666 0.448 0.426 0.470 0.988 1.859 0.266 0.974 0.974
Sine-circle map 25 0.600 2.000 0.484 0.445 0.522 0.974 1.880 0.156 0.985 0.985

Dissipative Maps
Hénon map (X) 30 0.666 2.166 0.316 0.291 0.341 0.969 1.854 0.242 0.971 0.971
Hénon map (Y) 30 0.666 2.166 0.316 0.291 0.341 0.969 1.854 0.239 0.971 0.971
Lozi map (X) 30 0.666 2.166 0.341 0.318 0.364 0.978 1.860 0.251 0.974 0.974
Lozi map (Y) 30 0.666 2.166 0.341 0.318 0.364 0.978 1.860 0.251 0.974 0.974
Delay logistic map (X) 24 0.600 1.800 0.515 0.478 0.551 0.976 1.659 0.191 0.869 0.869
Delay logistic map (Y) 24 0.600 1.800 0.515 0.478 0.551 0.976 1.659 0.191 0.869 0.869
Tinkerbell map (X) 26 0.666 1.666 0.457 0.429 0.485 0.982 1.851 0.156 0.970 0.969
Tinkerbell map (Y) 33 0.600 3.000 0.282 0.224 0.340 0.823 1.805 0.164 0.945 0.945
Burgers’ map (X) 39 0.500 5.750 0.209 0.134 0.285 0.594 1.415 0.264 0.741 0.741
Burgers’ map (Y) 14 0.500 1.250 0.936 0.822 1.051 0.968 1.513 0.186 0.792 0.792
Holmes map (X) 30 0.600 2.000 0.444 0.418 0.469 0.984 1.895 0.196 0.993 0.993
Holmes map (Y) 30 0.600 2.000 0.444 0.418 0.469 0.984 1.895 0.196 0.993 0.993
Dissipative standard map (X) 29 0.600 2.200 0.392 0.383 0.401 0.997 1.908 0.190 0.999 0.999
Dissipative standard map (Y) 32 0.600 2.000 0.399 0.378 0.419 0.987 1.908 0.183 0.999 0.999
Ikeda map (X) 30 0.600 2.200 0.409 0.393 0.426 0.992 1.905 0.195 0.998 0.998
Ikeda map (Y) 20 0.600 1.800 0.570 0.533 0.607 0.984 1.893 0.173 0.992 0.992
Sinai map ( X) 33 0.600 2.200 0.406 0.395 0.418 0.996 1.905 0.187 0.998 0.998
Sinai map ( Y) 28 0.600 2.200 0.396 0.382 0.410 0.994 1.903 0.180 0.997 0.996
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Systems kmax skewness kurtosis λ LCL UCL R2 S[P ] F [P ] S/Swn S/Swgn

Discrete predator-prey map (X) 28 0.600 2.200 0.419 0.400 0.439 0.989 1.863 0.167 0.976 0.976
Discrete predator-prey map (Y) 31 0.600 2.000 0.463 0.441 0.484 0.989 1.886 0.157 0.988 0.988

Conservative Maps
Chirikov standard map (X) 31 0.600 2.000 0.421 0.392 0.451 0.976 1.812 0.173 0.949 0.949
Chirikov standard map (Y) 30 0.600 2.200 0.397 0.366 0.427 0.971 1.734 0.194 0.908 0.908
Hnon-area preserving quadratic map (X) 25 0.200 1.200 0.533 0.465 0.602 0.929 1.633 0.240 0.855 0.855
Hnon-area preserving quadratic map (Y) 20 0.200 1.200 0.571 0.466 0.676 0.893 1.449 0.385 0.759 0.759
Arnold’s cat map (X) 31 0.200 2.200 0.411 0.399 0.424 0.995 1.899 0.187 0.995 0.995
Arnold’s cat map (Y) 31 0.200 2.200 0.411 0.399 0.424 0.995 1.899 0.187 0.995 0.995
Gingerbreadman map (X) 51 0.333 1.666 0.397 0.360 0.435 0.957 1.832 0.174 0.959 0.959
Gingerbreadman map (Y) 51 0.333 1.666 0.397 0.360 0.435 0.957 1.832 0.174 0.959 0.959
Chaotic web map (X) 21 0.600 1.400 0.594 0.523 0.665 0.949 1.647 0.278 0.863 0.863
Chaotic web map (Y) 21 0.600 1.400 0.594 0.523 0.665 0.949 1.647 0.278 0.863 0.863
Lorenz three dimensional chaotic map (X) 24 0.600 2.200 0.448 0.412 0.485 0.971 1.888 0.182 0.989 0.989
Lorenz three dimensional chaotic map (Y) 24 0.600 2.200 0.448 0.412 0.485 0.971 1.888 0.182 0.989 0.989
Lorenz three dimensional chaotic map (Z) 24 0.600 2.200 0.448 0.412 0.485 0.971 1.888 0.182 0.989 0.989

Schuster Maps
z = 1.25 134 0.600 2.000 0.387 0.362 0.412 0.979 1.762 0.223 0.923 0.923
z = 1.50 246 0.600 2.600 0.306 0.271 0.340 0.938 1.569 0.308 0.822 0.822
z = 1.75 5139 0.500 3.500 0.263 0.215 0.312 0.853 1.049 0.499 0.549 0.549
z = 2.00 7960 -1.000 13.000 0.252 0.196 0.308 0.797 0.751 0.617 0.394 0.394

Chaotic Flows
Lorenz system (X) 29 0.600 2.800 0.292 0.267 0.317 0.964 1.745 0.189 0.914 0.914
Rössler system (X) 74 0.333 1.833 0.412 0.385 0.439 0.979 1.826 0.274 0.956 0.956

Noise f−k

k = 0.00 29 0.600 2.200 0.404 0.398 0.409 0.999 1.909 0.181 1.000 1.000
k = 0.50 29 0.600 1.800 0.534 0.499 0.569 0.984 1.905 0.171 0.998 0.998
k = 1.00 17 0.600 1.600 0.628 0.565 0.692 0.970 1.894 0.162 0.992 0.992
k = 1.25 17 0.600 1.600 0.719 0.623 0.816 0.949 1.885 0.154 0.987 0.987
k = 1.50 16 0.200 1.600 0.787 0.679 0.896 0.951 1.871 0.148 0.980 0.980
k = 1.75 14 0.200 1.400 0.804 0.666 0.941 0.939 1.852 0.138 0.970 0.970
k = 2.00 15 0.000 1.750 0.895 0.761 1.029 0.947 1.830 0.131 0.959 0.959
k = 2.25 13 0.000 1.500 0.945 0.767 1.122 0.935 1.787 0.128 0.936 0.936
k = 2.50 12 0.000 1.500 0.946 0.766 1.126 0.942 1.739 0.125 0.911 0.911
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Systems kmax skewness kurtosis λ LCL UCL R2 S[P ] F [P ] S/Swn S/Swgn

Noise fBm
α = 1.2 23 0.600 2.000 0.499 0.478 0.520 0.983 1.905 0.170 0.998 0.998
α = 1.4 21 0.600 1.800 0.541 0.511 0.572 0.989 1.899 0.162 0.995 0.995
α = 1.6 21 0.600 1.800 0.602 0.561 0.642 0.984 1.891 0.156 0.990 0.990
α = 1.8 18 0.200 1.600 0.662 0.605 0.719 0.977 1.880 0.148 0.985 0.985
α = 2.0 17 0.200 1.600 0.726 0.660 0.792 0.976 1.860 0.136 0.974 0.974
α = 2.2 14 0.000 1.750 0.724 0.640 0.809 0.971 1.833 0.128 0.960 0.960
α = 2.4 15 0.000 1.750 0.877 0.754 1.001 0.953 1.794 0.121 0.940 0.940
α = 2.6 15 0.000 1.500 0.877 0.783 0.972 0.975 1.742 0.120 0.913 0.913
α = 2.8 14 0.000 1.500 1.008 0.873 1.143 0.962 1.681 0.121 0.880 0.880

Noise fGn
β = 0.8 31 0.600 2.200 0.380 0.370 0.390 0.997 1.907 0.195 0.999 0.999
β = 0.6 28 0.600 2.200 0.386 0.380 0.392 0.999 1.908 0.193 0.999 0.999
β = 0.4 33 0.600 2.200 0.392 0.386 0.398 0.999 1.909 0.189 1.000 1.000
β = 0.2 29 0.600 2.200 0.402 0.393 0.410 0.998 1.909 0.185 1.000 1.000
β = 0.0 31 0.600 2.200 0.407 0.400 0.414 0.999 1.909 0.183 1.000 1.000
β = −0.2 29 0.600 2.200 0.414 0.405 0.423 0.999 1.909 0.177 1.000 1.000
β = −0.4 29 0.600 2.000 0.448 0.428 0.467 0.993 1.908 0.172 0.999 0.999
β = −0.6 30 0.600 2.000 0.479 0.459 0.499 0.993 1.906 0.166 0.998 0.998
β = −0.8 27 0.600 1.800 0.499 0.480 0.517 0.995 1.902 0.160 0.996 0.996

Noise Contamination: Logistic map + A × white− noise
A = 0.0 41 0.666 2.333 0.285 0.268 0.302 0.982 1.846 0.203 0.967 0.967
A = 0.1 34 0.666 2.167 0.345 0.331 0.360 0.991 1.876 0.195 0.967 0.982
A = 0.2 31 0.666 2.000 0.360 0.345 0.374 0.992 1.886 0.193 0.988 0.988
A = 0.3 30 0.666 2.000 0.362 0.351 0.373 0.995 1.895 0.191 0.993 0.993
A = 0.4 29 0.666 2.000 0.367 0.350 0.383 0.990 1.900 0.190 0.995 0.995
A = 0.5 30 0.333 2.000 0.371 0.363 0.380 0.997 1.903 0.189 0.997 0.997
A = 0.6 29 0.333 2.000 0.374 0.366 0.382 0.998 1.905 0.188 0.998 0.998
A = 0.7 31 0.333 2.000 0.378 0.369 0.387 0.997 1.906 0.187 0.998 0.998
A = 0.8 31 0.333 2.000 0.379 0.371 0.387 0.998 1.907 0.186 0.999 0.999
A = 0.9 31 0.333 1.833 0.378 0.371 0.386 0.998 1.908 0.185 0.999 0.999
A = 1.0 31 0.333 1.833 0.379 0.366 0.391 0.994 1.908 0.184 0.999 0.999
Pure noise 36 0.333 1.833 0.407 0.396 0.417 0.997 1.909 0.181 1.000 1.000
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