2,156 research outputs found

    Economic Value of the Oil and Gas Resources on the Outer Continential Shelf

    Get PDF
    A theoretical framework for estimating the economic value of the federal government's offshore oil and gas resources is developed. This framework is then applied to geological and economic data generated by the Minerals Management Service in support of their five-year leasing plan. With an 8 percent real discount rate and a 1 percent real price growth rate, the remaining economic rent as of 1987 on the reserves plus the undiscovered offshore oil and gas resources is estimated at 118.6billion(1987dollars).Thepresentvalueofthegovernmentsreceiptsfromcashbonusandroyaltypaymentsonthesedepositsisestimatedat118.6 billion (1987 dollars). The present value of the government's receipts from cash bonus and royalty payments on these deposits is estimated at 37.2 billion. Over 80 percent of the remaining economic rent is derived from developed reserve deposits located in the Gulf of Mexico. The private sector has previously paid cash bonuses for the leases located on those deposits and financed the installation of the development platforms. Because of this, the government will collect only a small portion, approximately 22 percent, of the rent remaining on those reserves.Environmental Economics and Policy, Resource /Energy Economics and Policy,

    Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP

    Get PDF
    Raf-1 phosphorylates and activates MEK-1, a kinase that activates the extracellular signal regulated kinases (ERK). This kinase cascade controls the proliferation and differentiation of different cell types. Here we describe a Raf-1-interacting protein, isolated using a yeast two-hybrid screen. This protein inhibits the phosphorylation and activation of MEK by Raf-1 and is designated RKIP (Raf kinase inhibitor protein). In vitro, RKIP binds to Raf-1, MEK and ERK, but not to Ras. RKIP co-immunoprecipitates with Raf-1 and MEK from cell lysates and colocalizes with Raf-1 when examined by confocal microscopy. RKIP is not a substrate for Raf-1 or MEK, but competitively disrupts the interaction between these kinases. RKIP overexpression interferes with the activation of MEK and ERK, induction of AP-1-dependent reporter genes and transformation elicited by an oncogenically activated Raf-1 kinase. Downregulation of endogenous RKIP by expression of antisense RNA or antibody microinjection induces the activation of MEK-, ERK- and AP-1-dependent transcription. RKIP represents a new class of protein-kinase-inhibitor protein that regulates the activity of the Raf/MEK/ERK modul

    Covert Reorganization of Implicit Task Representations by Slow Wave Sleep

    Get PDF
    There is evidence that slow wave sleep (SWS) promotes the consolidation of memories that are subserved by mediotemporal- and hippocampo-cortical neural networks. In contrast to implicit memories, explicit memories are accompanied by conscious (attentive and controlled) processing. Awareness at pre-sleep encoding has been recognized as critical for the off-line memory consolidation. The present study elucidated the role of task-dependent cortical activation guided by attentional control at pre-sleep encoding for the consolidation of hippocampus-dependent memories during sleep.A task with a hidden regularity was used (Number Reduction Task, NRT), in which the responses that can be implicitly predicted by the hidden regularity activate hippocampo-cortical networks more strongly than responses that cannot be predicted. Task performance was evaluated before and after early-night sleep, rich in SWS, and late-night sleep, rich in rapid eye movement (REM) sleep. In implicit conditions, slow cortical potentials (SPs) were analyzed to reflect the amount of controlled processing and the localization of activated neural task representations.During implicit learning before sleep, the amount of controlled processing did not differ between unpredictable and predictable responses, nor between early- and late-night sleep groups. A topographic re-distribution of SPs indicating a spatial reorganization occurred only after early, not after late sleep, and only for predictable responses. These SP changes correlated with the amount of SWS and were covert because off-line RT decrease did not differentiate response types or sleep groups.It is concluded that SWS promotes the neural reorganization of task representations that rely on the hippocampal system despite absence of conscious access to these representations.Original neurophysiologic evidence is provided for the role of SWS in the consolidation of memories encoded with hippocampo-cortical interaction before sleep. It is demonstrated that this SWS-mediated mechanism does not depend critically on explicitness at learning nor on the amount of controlled executive processing during pre-sleep encoding

    Memory enhancing drugs and Alzheimer’s Disease: Enhancing the self or preventing the loss of it?

    Get PDF
    In this paper we analyse some ethical and philosophical questions related to the development of memory enhancing drugs (MEDs) and anti-dementia drugs. The world of memory enhancement is coloured by utopian thinking and by the desire for quicker, sharper, and more reliable memories. Dementia is characterized by decline, fragility, vulnerability, a loss of the most important cognitive functions and even a loss of self. While MEDs are being developed for self-improvement, in Alzheimer’s Disease (AD) the self is being lost. Despite this it is precisely those patients with AD and other forms of dementia that provide the subjects for scientific research on memory improvement. Biomedical research in the field of MEDs and anti-dementia drugs appears to provide a strong impetus for rethinking what we mean by ‘memory’, ‘enhancement’, ‘therapy’, and ‘self’. We conclude (1) that the enhancement of memory is still in its infancy, (2) that current MEDs and anti-dementia drugs are at best partially and minimally effective under specific conditions, (3) that ‘memory᾿and ‘enhancement᾿are ambiguous terms, (4) that there is no clear-cut distinction between enhancement and therapy, and (5) that the research into MEDs and anti-dementia drugs encourages a reductionistic view of the human mind and of the self

    Intracrine androgens enhance decidualization and modulate expression of human endometrial receptivity genes

    Get PDF
    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1–8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment
    corecore