64 research outputs found

    Characterization of proximal pulmonary arterial cells from chronic thromboembolic pulmonary hypertension patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic thromboembolic pulmonary hypertension (CTEPH) is associated with proximal pulmonary artery obstruction and vascular remodeling. We hypothesized that pulmonary arterial smooth muscle (PASMC) and endothelial cells (PAEC) may actively contribute to remodeling of the proximal pulmonary vascular wall in CTEPH. Our present objective was to characterize PASMC and PAEC from large arteries of CTEPH patients and investigate their potential involvement in vascular remodeling.</p> <p>Methods</p> <p>Primary cultures of proximal PAEC and PASMC from patients with CTEPH, with non-thromboembolic pulmonary hypertension (PH) and lung donors have been established. PAEC and PASMC have been characterized by immunofluorescence using specific markers. Expression of smooth muscle specific markers within the pulmonary vascular wall has been studied by immunofluorescence and Western blotting. Mitogenic activity and migratory capacity of PASMC and PAEC have been investigated <it>in vitro</it>.</p> <p>Results</p> <p>PAEC express CD31 on their surface, von Willebrand factor in Weibel-Palade bodies and take up acetylated LDL. PASMC express various differentiation markers including α-smooth muscle actin (α-SMA), desmin and smooth muscle myosin heavy chain (SMMHC). In vascular tissue from CTEPH and non-thromboembolic PH patients, expression of α-SMA and desmin is down-regulated compared to lung donors; desmin expression is also down-regulated in vascular tissue from CTEPH compared to non-thromboembolic PH patients. A low proportion of α-SMA positive cells express desmin and SMMHC in the neointima of proximal pulmonary arteries from CTEPH patients. Serum-induced mitogenic activity of PAEC and PASMC, as well as migratory capacity of PASMC, were increased in CTEPH only.</p> <p>Conclusions</p> <p>Modified proliferative and/or migratory responses of PASMC and PAEC <it>in vitro</it>, associated to a proliferative phenotype of PASMC suggest that PASMC and PAEC could contribute to proximal vascular remodeling in CTEPH.</p

    Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus

    Get PDF
    Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause deformities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydrocarbons (pHAHs) that are agonists for the aryl hydrocarbon receptor (AHR). Previous studies have suggested that activity of cytochrome P4501A, a member of the AHR gene battery, is important to the toxicity of pHAHs, and inhibition of CYP1A can reduce the early-life-stage toxicity of pHAHs. In light of the effects of CYP1A inhibition on pHAH-derived toxicity, we explored the impact of both model and environmentally relevant CYP1A inhibitors on PAH-derived embryotoxicity. We exposed Fundulus heteroclitus embryos to two PAH-type AHR agonists, β-naphthoflavone and benzo(a)pyrene, and one pHAH-type AHR agonist, 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), alone and in combination with several CYP1A inhibitors. In agreement with previous studies, coexposure of embryos to PCB-126 with the AHR antagonist and CYP1A inhibitor α-naphthoflavone decreased frequency and severity of deformities compared with embryos exposed to PCB-126 alone. In contrast, embryos coexposed to the PAHs with each of the CYP1A inhibitors tested were deformed with increased severity and frequency compared with embryos dosed with PAH alone. The mechanism by which inhibition of CYP1A increased embryotoxicity of the PAHs tested is not understood, but these results may be helpful in elucidating mechanisms by which PAHs are embryotoxic. Additionally, these results call into question additive models of PAH embryotoxicity for environmental PAH mixtures that contain both AHR agonists and CYP1A inhibitors

    Seasonal Variations of the Activity of Antioxidant Defense Enzymes in the Red Mullet (Mullus barbatus l.) from the Adriatic Sea

    Get PDF
    This study investigated seasonal variations of antioxidant defense enzyme activities: total, manganese, copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) activity in the liver and white muscle of red mullet (Mullus barbatus). The investigations were performed in winter and spring at two localities: Near Bar (NB) and Estuary of the River Bojana (EB) in the Southern Adriatic Sea. At both sites, Mn SOD, GSH-Px, GR and GST activities decreased in the liver in spring. In the white muscle, activities of Mn SOD, GSH-Px, GR and GST in NB decreased in spring. GR decreased in spring in EB, while CAT activity was higher in spring at both sites. The results of Principal Component Analysis (PCA) based on correlations indicated a clear separation of various sampling periods for both investigated tissues and a marked difference between two seasons. Our study is the first report on antioxidant defense enzyme activities in the red mullet in the Southern Adriatic Sea. It indicates that seasonal variations of antioxidant defense enzyme activities should be used in further biomonitoring studies in fish species

    Hexabromocyclododecanes (HBCDs) in the environment and humans: A review

    Get PDF
    Hexabromocyclododecanes (HBCDs) are brominated aliphatic cyclic hydrocarbons used as flame retardants in thermal insulation building materials, upholstery textiles, and electronics. As a result of their widespread use and their physical and chemical properties, HBCDs are now ubiquitous contaminants in the environment and humans. This review summarizes HBCD concentrations in several environmental compartments and analyzes these data in terms of point sources versus diffuse sources, biomagnification potential, stereoisomer profiles, time trends, and global distribution. Generally, higher concentrations were measured in samples (air, sediment, and fish) collected near point sources (plants producing or processing HBCDs), while lower concentrations were recorded in samples from locations with no obvious sources of HBCDs. High concentrations were measured in top predators, such as marine mammals and birds of prey (up to 9600 and 19 200 ng/g lipid weight, respectively), suggesting a biomagnification potential for HBCDs. Relatively low HBCD concentrations were reported in the few human studies conducted to date (median values varied between 0.35 and 1.1 ng/g lipid weight). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. One important observation is the shift from the high percentage of the gamma-HBCD stereoisomer in the technical products to a dominance of the alpha-HBCD stereoisomer in biological samples. A combination of factors such as variations in solubility, partitioning behavior, uptake, and, possibly, selective metabolism of individual isomers may explain the observed changes in stereoisomer patterns. Recommendations for further work include research on how HBCDs are transferred from products into the environment upon production, use, and disposal. Time trends need to be analyzed more in detail, including HBCD stereoisomers, and more data on terrestrial organisms are needed, especially for humans. Whenever possible, HBCDs should be analyzed as individual stereoisomers in order to address their fate and effects

    Binding of [F-18]AV1451 in post mortem brain slices of semantic variant primary progressive aphasia patients

    No full text
    PURPOSE: In vivo tau-PET tracer retention in the anterior temporal lobe of patients with semantic variant primary progressive aphasia (SV PPA) has consistently been reported. This is unexpected as the majority of these patients have frontotemporal lobar degeneration TDP (FTLD-TDP). METHODS: We conducted an in vitro [18F]AV1451 autoradiography binding study in five cases with a clinical diagnosis of SV PPA constituting the range of pathologies (i.e., three FTLD-TDP, one Alzheimer's disease (AD), and one Pick's disease (PiD)). Binding was compared with two controls without neurodegeneration, two typical AD, one corticobasal syndrome with underlying AD, and one frontotemporal dementia behavioral variant with FTLD-TDP. The effect of blocking with the authentic reference material and with the MAO-B inhibitor deprenyl was assessed. Immunohistochemistry was performed on adjacent cryosections. RESULTS: Absence of specific [18F]AV1451 binding was observed for all three SV PPA FTLD-TDP cases. The absence of binding in controls as well as the successful blocking with authentic AV1451 in cases with tauopathy demonstrated specificity of the [18F]AV1451 signal for tau. The specific [18F]AV1451 binding was highest in AD, followed by PiD. This binding colocalized with the respective tau lesions and could not be blocked by deprenyl. Similar pilot findings were obtained with [18F]THK5351. CONCLUSION: In vitro autoradiography showed no [18F]AV1451 binding in SV PPA due to FTLD-TDP, while specific binding was present in SV PPA due to AD and PiD. The discrepancy between in vitro and in vivo findings remains to be explained. The discordance is not related to [18F]AV1451 idiosyncrasies as [18F]THK5351 findings were similar.status: publishe
    corecore