88 research outputs found

    Does the cognitive architecture of simplex and multiplex ASD families differ?

    Get PDF
    Contains fulltext : 167741.pdf (publisher's version ) (Open Access)Children with an autism spectrum disorder (ASD) and their unaffected siblings from 54 simplex (SPX, one individual in the family affected) and 59 multiplex (MPX, two or more individuals affected) families, and 124 controls were assessed on intelligence, social cognition and executive functions. SPX and MPX ASD probands displayed similar cognitive profiles, but within-family contrasts were highest in SPX families, suggesting SPX-MPX stratification may help parse etiological heterogeneity of ASD. Unaffected siblings (regardless SPX or MPX) were mostly unimpaired, suggesting that cognitive problems may be part of the defining features of ASD, rather than being an endophenotypic trait. Except for affective prosody, which appeared to be the most sensitive cognitive marker for detecting familial risk for ASD

    Identifying Unique Versus Shared Pre- and Perinatal Risk Factors for ASD and ADHD Using a Simplex-Multiplex Stratification

    Get PDF
    Contains fulltext : 167866.pdf (publisher's version ) (Open Access)Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur. Besides shared genetic factors, pre- and perinatal risk factors (PPFs) may determine if ASD, ADHD, or the combination of both disorders becomes manifest. This study aimed to test shared and unique involvement of PPFs for ASD and ADHD, using an approach that stratifies the sample into affected/unaffected offspring and single-incidence (SPX) versus multi-incidence (MPX) families. Pre- perinatal data based on retrospective parent-report were collected in 288 children (71 % males) from 31 SPX and 59 MPX ASD families, 476 children (65 % males) from 31 SPX and 171 MPX ADHD families, and 408 control children (42 % males). Except for large family size and more firstborns amongst affected offspring, no shared PFFs were identified for ASD and ADHD. PPFs predominantly related to ASD (maternal infections and suboptimal condition at birth) were more often reported in affected than unaffected siblings. PPFs associated with ADHD (low parental age, maternal diseases, smoking and stress) were shared between affected and unaffected siblings. Firstborn-ship was more frequent in SPX than MPX ASD probands. Our results suggest that the co-morbidity of ASD and ADHD is not likely explained by shared PPFs. Instead, PPFs might play a crucial role in the developmental pathways leading up to either disorder. PPFs in ADHD appear to index an increased shared risk, whereas in ASD PPFs possibly have a more determining role in the disorder. SPX-MPX stratification detected possible etiological differences in ASD families, but provided no deeper insight in the role of PPFs in ADHD

    Elimination diets' efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder

    Get PDF
    Nutrition plays an important role in neurodevelopment. This insight has led to increasing research into the efficacy of nutrition-related interventions for treating neurodevelopmental disorders. This review discusses an elimination diet as a treatment for attention deficit hyperactivity disorder and autism spectrum disorder, with a focus on the efficacy of the food additives exclusion diet, gluten-free/casein-free diet and oligoantigenic diet. Furthermore, we discuss the potential mechanisms of elimination diets' effects in these neurodevelopmental disorders. The main candidate mechanism is the microbiome-gut-brain axis possibly involving complex interactions between multiple systems, including the metabolic, immune, endocrine, and neural system. We conclude with practical implications and future directions into the investigation of an elimination diet's efficacy in the treatment of attention deficit hyperactivity disorder and autism spectrum disorder

    Substance use and nicotine dependence in persistent, remittent, and late-onset ADHD:a 10-year longitudinal study from childhood to young adulthood

    Get PDF
    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is associated with substance use disorders (SUD; alcohol and/or drug dependence) and nicotine dependence. This study aims to advance our knowledge about the association between SUD, nicotine dependence, and the course of ADHD (persistent versus remittent ADHD and late-onset ADHD).METHODS: ADHD, SUD, and nicotine dependence were longitudinally assessed (mean age at study entry 11.3 years, mean age at follow-up 21.1 years) using structured psychiatric interviews and multi-informant questionnaires in a subsample of the Dutch part of the International Multicenter ADHD Genetics study. Individuals with persistent ADHD (n = 62), remittent ADHD (n = 12), late-onset ADHD (n = 18; age of onset after 12 years), unaffected siblings (n = 50), and healthy controls (n = 47) were assessed. Hazard ratios (HR) with 95% confidence intervals (CIs) were estimated by Cox regression and adjusted for clustered family data, gender, follow-up length, and current age.RESULTS: Individuals with persistent ADHD were at significantly higher risk of development of SUD relative to healthy controls (HR = 4.56, CI 1.17-17.81). In contrast, levels of SUD in those with remittent ADHD were not different from healthy controls (HR = 1.00, CI .07-13.02). ADHD persisters had also higher prevalence rates of nicotine dependence (24.2%) than ADHD remitters (16.7%) and healthy controls (4.3%). A similar pattern was found in initially unaffected siblings who met ADHD criteria at follow-up ("late-onset" ADHD); they had also a higher prevalence of SUD (33%) compared to stable unaffected siblings (20%) and were at significantly increased risk of development of nicotine dependence compared to healthy controls (HR = 13.04, CI 2.08-81.83).CONCLUSIONS: SUD and nicotine dependence are associated with a negative ADHD outcome. Results further emphasize the need for clinicians to comprehensively assess substance use when diagnosing ADHD in adolescents and adults.</p

    Neurocognitive markers of late-onset ADHD:a 6-year longitudinal study

    Get PDF
    Item does not contain fulltextBACKGROUND: There is an increased interest in 'late-onset' attention-deficit/hyperactivity disorder (ADHD), referring to the onset of clinically significant ADHD symptoms after the age of 12 years. This study aimed to examine whether unaffected siblings with late-onset ADHD could be differentiated from stable unaffected siblings by their neurocognitive functioning in childhood. METHODS: We report findings from a 6-year prospective, longitudinal study of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) study, including individuals with childhood-onset (persistent) ADHD (n = 193), their siblings with late-onset ADHD (n = 34), their stable unaffected siblings (n = 111) and healthy controls (n = 186). At study entry (mean age: 11.3) and follow-up (mean age: 17.01), participants were assessed for ADHD by structured psychiatric interviews and multi-informant questionnaires. Several neurocognitive functions were assessed at baseline and after 6 years, including time reproduction, timing variability (reaction time variability and time production variability), reaction time speed, motor control and working memory; intelligence was taken as a measure of overall neurocognitive functioning. RESULTS: Siblings with late-onset ADHD were similar to individuals with childhood-onset ADHD in showing longer reaction times and/or higher error rates on all neurocognitive measures at baseline and follow-up, when compared to healthy controls. They differed from stable unaffected siblings (who were similar to healthy controls) by greater reaction time variability and timing production variability at baseline. No significant group by time interaction was found for any of the tasks. CONCLUSIONS: For unaffected siblings of individuals with ADHD, reaction time variability and timing production variability may serve as neurocognitive marker for late-onset ADHD

    Neurocognitive Predictors of ADHD Outcome:A 6-Year Follow-up Study

    Get PDF
    Contains fulltext : 169764.pdf (publisher's version ) (Open Access)Although a broad array of neurocognitive dysfunctions are associated with ADHD, it is unknown whether these dysfunctions play a role in the course of ADHD symptoms. The present longitudinal study investigated whether neurocognitive functions assessed at study-entry (mean age = 11.5 years, SD = 2.7) predicted ADHD symptom severity and overall functioning 6 years later (mean age = 17.4 years, 82.6 % = male) in a carefully phenotyped large sample of 226 Caucasian participants from 182 families diagnosed with ADHD-combined type. Outcome measures were dimensional measures of ADHD symptom severity and the Kiddie-Global Assessment Scale (K-GAS) for overall functioning. Predictors were derived from component scores for 8 domains of neurocognitive functioning: working memory, motor inhibition, cognitive inhibition, reaction time variability, timing, information processing speed, motor control, intelligence. Effects of age, gender, and pharmacological treatment were considered. Results showed that better working memory predicted lower ADHD symptom severity (R 2 = 3.0 %), and less reaction time variability predicted better overall functioning (higher K-GAS-score, R 2 = 5.6 %). Predictors were still significant with baseline behavior included in the models. The role of neurocognitive functioning in the long term outcome of ADHD behavior is discussed

    How 'core' are motor timing difficulties in ADHD? A latent class comparison of pure and comorbid ADHD classes

    Get PDF
    Contains fulltext : 167849.pdf (publisher's version ) (Open Access)Children with attention-deficit/hyperactivity disorder (ADHD) have motor timing difficulties. This study examined whether affected motor timing accuracy and variability are specific for ADHD, or that comorbidity with autism spectrum disorders (ASD) contributes to these motor timing difficulties. An 80-trial motor timing task measuring accuracy (mu), variability (sigma) and infrequent long response times (tau) in estimating a 1-s interval was administered to 283 children and adolescents (8-17 years) from both a clinic and population based sample. They were divided into four latent classes based on the SCQ and CPRS-R:L data. These classes were: without behavioral problems 'Normal-class' (n = 154), with only ADHD symptoms 'ADHD-class' (n = 49), and two classes with both ASD and ADHD symptoms; ADHD(+ASD)-class (n = 39) and ASD(+ADHD)-class (n = 41). The pure ADHD-class did not deviate from the Normal class on any of the motor timing measures (mean RTs 916 and 925 ms, respectively). The comorbid ADHD(+ASD) and ASD(+ADHD) classes were significantly less accurate (more time underestimations) compared to the Normal class (mean RTs 847 and 870 ms, respectively). Variability in motor timing was reduced in the younger children in the ADHD(+ASD) class, which may reflect a tendency to rush the tedious task. Only patients with more severe behavioral symptoms show motor timing deficiencies. This cannot merely be explained by high ADHD severity with ASD playing no role, as ADHD symptom severity in the pure ADHD-class and the ASD(+ADHD) class was highly similar, with the former class showing no motor timing deficits

    Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings

    Get PDF
    Contains fulltext : 168270.pdf (publisher's version ) (Closed access)BACKGROUND: Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. METHODS: We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. RESULTS: Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8-30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. LIMITATIONS: Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. CONCLUSION: Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research

    Comorbid problems in ADHD: degree of association, shared endophenotypes, and formation of distinct subtypes: Implications for a future DSM

    Get PDF
    We aimed to assess which comorbid problems (oppositional defiant behaviors, anxiety, autistic traits, motor coordination problems, and reading problems) were most associated with Attention-Deficit/Hyperactivity Disorder (ADHD); to determine whether these comorbid problems shared executive and motor problems on an endophenotype level with ADHD; and to determine whether executive functioning (EF)-and motor-endophenotypes supported the hypothesis that ADHD with comorbid problems is a qualitatively different phenotype than ADHD without comorbid problems. An EF-and a motor-endophenotype were formed based on nine neuropsychological tasks administered to 816 children from ADHD-and control-families. Additional data on comorbid problems were gathered using questionnaires. Results indicated that oppositional defiant behaviors appeared the most important comorbid problems of ADHD, followed by autistic traits, and than followed by motor coordination problems, anxiety, and reading problems. Both the EF-and motor-endophenotype were correlated and cross-correlated in siblings to autistic traits, motor coordination problems and reading problems, suggesting ADHD and these comorbid problems may possibly share familial/genetic EF and motor deficits. No such results were found for oppositional defiant behaviors and anxiety. ADHD in co-occurrence with comorbid problems may not be best seen as a distinct subtype of ADHD, but further research is warranted

    The co-occurrence of autism spectrum disorder and attention-deficit/hyperactivity disorder symptoms in parents of children with ASD or ASD with ADHD

    Get PDF
    Background: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) share about 50-72% of their genetic factors, which is the most likely explanation for their frequent co-occurrence within the same patient or family. An additional or alternative explanation for the co-occurrence may be (cross-)assortative mating, e.g., the tendency to choose a partner that is similar or dissimilar to oneself. Another issue is that of parent-of-origin effect which refers to the possibility of parents differing in the relative quantity of risk factors they transmit to the offspring. The current study sets out to examine (cross-)assortative mating and (cross-)parent-of-origin effects of ASD and ADHD in parents of children with either ASD or ASD with ADHD diagnosis. Methods: In total, 121 families were recruited in an ongoing autism-ADHD family genetics project. Participating families consisted of parents and at least one child aged between 2 and 20 years, with either autistic disorder, Asperger disorder or PDD-NOS, and one or more biological siblings. All children and parents were carefully screened for the presence of ASD and ADHD. Results: No correlations were found between maternal and paternal ASD and ADHD symptoms. Parental ASD and ADHD symptoms were predictive for similar symptoms in the offspring, but with maternal hyperactive-impulsive symptoms, but not paternal symptoms, predicting similar symptoms in daughters. ASD pathology in the parents was not predictive for ADHD pathology in the offspring, but mother&apos;s ADHD pathology was predictive for offspring ASD pathology even when corrected for maternal ASD pathology. Conclusions: Cross-assortative mating for ASD and ADHD does not form an explanation for the frequent co-occurrence of these disorders within families. Given that parental ADHD is predictive of offspring&apos; ASD but not vice versa, risk factors underlying ASD may overlap to a larger degree with risk factors underlying ADHD than vice versa. However, future research is needed to clarify this issue. Keywords: Assortative mating, parent-of-origin effect, autism spectrum disorder, attention-deficit/hyperactivity disorder
    • …
    corecore