1,538 research outputs found
A Declarative Semantics for CLP with Qualification and Proximity
Uncertainty in Logic Programming has been investigated during the last
decades, dealing with various extensions of the classical LP paradigm and
different applications. Existing proposals rely on different approaches, such
as clause annotations based on uncertain truth values, qualification values as
a generalization of uncertain truth values, and unification based on proximity
relations. On the other hand, the CLP scheme has established itself as a
powerful extension of LP that supports efficient computation over specialized
domains while keeping a clean declarative semantics. In this paper we propose a
new scheme SQCLP designed as an extension of CLP that supports qualification
values and proximity relations. We show that several previous proposals can be
viewed as particular cases of the new scheme, obtained by partial
instantiation. We present a declarative semantics for SQCLP that is based on
observables, providing fixpoint and proof-theoretical characterizations of
least program models as well as an implementation-independent notion of goal
solutions.Comment: 17 pages, 26th Int'l. Conference on Logic Programming (ICLP'10
A Transformation-based Implementation for CLP with Qualification and Proximity
Uncertainty in logic programming has been widely investigated in the last
decades, leading to multiple extensions of the classical LP paradigm. However,
few of these are designed as extensions of the well-established and powerful
CLP scheme for Constraint Logic Programming. In a previous work we have
proposed the SQCLP (proximity-based qualified constraint logic programming)
scheme as a quite expressive extension of CLP with support for qualification
values and proximity relations as generalizations of uncertainty values and
similarity relations, respectively. In this paper we provide a transformation
technique for transforming SQCLP programs and goals into semantically
equivalent CLP programs and goals, and a practical Prolog-based implementation
of some particularly useful instances of the SQCLP scheme. We also illustrate,
by showing some simple-and working-examples, how the prototype can be
effectively used as a tool for solving problems where qualification values and
proximity relations play a key role. Intended use of SQCLP includes flexible
information retrieval applications.Comment: 49 pages, 5 figures, 1 table, preliminary version of an article of
the same title, published as Technical Report SIC-4-10, Universidad
Complutense, Departamento de Sistemas Inform\'aticos y Computaci\'on, Madrid,
Spai
Deployment of Digital Video and Audio Over Electrical SCADA Networks
With the arrival of new hardware and software technologies,
supervisory control and data acquisition human-machine
interfaces (SCADA/HMI), usually text-based, can now benefit
from the advantages the inclusion of multimedia information
brings. However, due to the special requirements imposed by
such systems, integrating audio and video data into the SCADA
interfaces is not a trivial task. In this document we analyze those
special characteristics and propose solutions so this integration is
possible in power systems communication.Ministerio de Ciencia y TecnologĂa TIC2000-0367-P4-0
Characterizations of inequality orderings by means of dispersive orderings
The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to the ordering of generalized gamma distributions with different parameters
The proportional likelihood ratio order and applications
In this paper, we introduce a new stochastic order between continuous non-negative random variables called the PLR (proportional likelihood ratio) order, which is closely related to the usual likelihood ratio order. The PLR order can be used to characterize random variables whose logarithms have log-concave (log-convex) densities. Many income random variables satisfy this property and they are said to have the IPLR (increasing proportional likelihood ratio) property (DPLR property). As an application, we show that the IPLR and DPLR properties are sufficient conditions for the Lorenz ordering of truncated distributions
Characterizations of inequality orderings by means of dispersive orderings
The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to the ordering of generalized gamma distributions with different parameters
- …