108 research outputs found

    Thermally Stable Nanoparticles on Supports

    Get PDF
    This patent describes a new synthesis method for the large scale and low-cost production of size-selected nanoparticles with uniform 2D arrangement on a surface and nanowire patterned substrates with tunable width and interwire distance in a single preparation step. The nanoparticles prepared using our modified synthesis procedure exhibit an enhanced thermal stability and resistance against coarsening/sintering and desoreption at high temperature [at least 1060?C for Pt/TiO2(110)] thanks to the presence of a “polymeric glue” at the nanoparticle/support interface. Such thermally stable particles are can not only be stabilized on single crystal surfaces such as TiO2(110) but also on real-world catalytic supports such as nanocrystalline powders (anatase TiO2, CeO2, etc.). A second major advantage of our invention is the the possibility of using the strong nanoparticle/support interactions present in these low dimensional systems to create patterned surfaces at the nanoscale. As an exampl

    Method For Forming Thermally Stable Nanoparticles on Supports

    Get PDF
    This patent describes a new synthesis method for the large scale and low-cost production of size-selected nanoparticles with uniform 2D arrangement on a surface and nanowire patterned substrates with tunable width and interwire distance in a single preparation step. The nanoparticles prepared using our modified synthesis procedure exhibit an enhanced thermal stability and resistance against coarsening/sintering and desoreption at high temperature [at least 1060?C for Pt/TiO2(110)] thanks to the presence of a “polymeric glue” at the nanoparticle/support interface. Such thermally stable particles are can not only be stabilized on single crystal surfaces such as TiO2(110) but also on real-world catalytic supports such as nanocrystalline powders (anatase TiO2, CeO2, etc.). A second major advantage of our invention is the the possibility of using the strong nanoparticle/support interactions present in these low dimensional systems to create patterned surfaces at the nanoscale. As an exampl

    Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method

    Get PDF
    There is great economic incentive in developing efficient catalysts to produce hydrogen or syngas by catalytic partial oxidation of methane (CPOM) since this is a much less energy-intensive reaction than the highly endothermic methane steam reforming reaction, which is the prominent reaction in industry. Herein, we report the catalytic behavior of nickel-based catalysts supported on different oxide substrates (Al2O3, CeO2, La2O3, MgO, and ZrO2) synthesized via wet impregnation and solid-state reaction. Furthermore, the impact of Rh doping was investigated. The catalysts have been characterized by X-ray diffraction, N2 adsorptiondesorption at −196°C, temperature-programmed reduction, X-ray photoelectron spectroscopy, O2-pulse chemisorption, transmission electron microscopy, and Raman spectroscopy. Supported Ni catalysts were found to be active for CPOM but can suffer from fast deactivation caused by the formation of carbon deposits as well as via the sintering of Ni nanoparticles (NPs). It has been found that the presence of Rh favors nickel reduction, which leads to an increase in the methane conversion and yield. For both synthesis methods, the catalysts supported on alumina and ceria show the best performance. This could be explained by the higher surface area of the Ni NPs on the alumina surface and presence of oxygen vacancies in the CeO2 lattice, which favor the proportion of oxygen adsorbed on defect sites. The catalysts supported on MgO suffer quick deactivation due to formation of a NiO/MgO solid solution, which is not reducible under the reaction conditions. The low level of carbon formation over the catalysts supported on La2O3 is ascribed to the very high dispersion of the nickel NPs and to the formation of lanthanum oxycarbonate, through which carbon deposits are gasified. The catalytic behavior for catalysts with ZrO2 as support depends on the synthesis method; however, in both cases, the catalysts undergo deactivation by carbon deposits

    Releasing the Bubbles: Nanotopographical Electrocatalyst Design for Efficient Photoelectrochemical Hydrogen Production in Microgravity Environment

    Get PDF
    Photoelectrochemical devices integrate the processes of light absorption, charge separation, and catalysis for chemical synthesis. The monolithic design is interesting for space applications, where weight and volume constraints predominate. Hindered gas bubble desorption and the lack of macroconvection processes in reduced gravitation, however, limit its application in space. Physico-chemical modifications of the electrode surface are required to induce gas bubble desorption and ensure continuous device operation. A detailed investigation of the electrocatalyst nanostructure design for light-assisted hydrogen production in microgravity environment is described. p-InP coated with a rhodium (Rh) electrocatalyst layer fabricated by shadow nanosphere lithography is used as a model device. Rh is deposited via physical vapor deposition (PVD) or photoelectrodeposition through a mask of polystyrene (PS) particles. It is observed that the PS sphere size and electrocatalyst deposition technique alter the electrode surface wettability significantly, controlling hydrogen gas bubble detachment and photocurrent–voltage characteristics. The highest, most stable current density of 37.8 mA cm−2 is achieved by depositing Rh via PVD through 784 nm sized PS particles. The increased hydrophilicity of the photoelectrode results in small gas bubble contact angles and weak frictional forces at the solid–gas interface which cause enhanced gas bubble detachment and enhanced device efficiency

    Revealing the Intrinsic Restructuring of Bi2O3 Nanoparticles into Bi Nanosheets during Electrochemical CO2 Reduction

    Get PDF
    Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (−0.3 VRHE), they dissolved over time at larger negative potentials (−0.4 and −0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms.B.Á.-B. is grateful to the MICINN Spanish Ministry for the predoctoral grant (reference CTQ2016-76231-C2-2-R). B.Á.-B., V.M., and J.S.-G. acknowledge financial support by the MICINN Spanish Ministry, (Project PID2019-108136RB-C32) and Generalitat Valenciana (Project PROMETEO/2020/063). F.Y. acknowledges funding from the Chinese Scholars Council, A.Y. from the Humboldt Foundation (Germany), and M.L.L from the National Council of Science and Technology of Mexico (CONACyT, Grant No. 708585)

    Excitation wavelength independent sensitized Er3+ concentration in as-deposited and low temperature annealed Si-rich SiO2 films

    Get PDF
    Erbium sensitization is observed in as-deposited Er3+ doped Si-rich SiO2, ruling out the involvement of Si nanocrystals in the Er3+ excitation in these samples. The Er3+ excitation cross section in this material is similar within a factor 3 to that of samples annealed at 600 degrees C under 355 and 532 nm excitation. The density of sensitized Er3+ ions is shown to be excitation wavelength independent, while the shape of the Er3+ excitation spectra is governed by a wavelength dependent Er3+ excitation cross section. These findings enable the use of a broad range of wavelengths for the efficient excitation of this gain medium

    Releasing the bubbles : nanotopographical electrocatalyst design for efficient photoelectrochemical hydrogen production in microgravity environment

    Get PDF
    Photoelectrochemical devices integrate the processes of light absorption, charge separation, and catalysis for chemical synthesis. The monolithic design is interesting for space applications, where weight and volume constraints predominate. Hindered gas bubble desorption and the lack of macroconvection processes in reduced gravitation, however, limit its application in space. Physico‐chemical modifications of the electrode surface are required to induce gas bubble desorption and ensure continuous device operation. A detailed investigation of the electrocatalyst nanostructure design for light‐assisted hydrogen production in microgravity environment is described. p‐InP coated with a rhodium (Rh) electrocatalyst layer fabricated by shadow nanosphere lithography is used as a model device. Rh is deposited via physical vapor deposition (PVD) or photoelectrodeposition through a mask of polystyrene (PS) particles. It is observed that the PS sphere size and electrocatalyst deposition technique alter the electrode surface wettability significantly, controlling hydrogen gas bubble detachment and photocurrent–voltage characteristics. The highest, most stable current density of 37.8 mA cm−2 is achieved by depositing Rh via PVD through 784 nm sized PS particles. The increased hydrophilicity of the photoelectrode results in small gas bubble contact angles and weak frictional forces at the solid–gas interface which cause enhanced gas bubble detachment and enhanced device efficiency

    Shape-dependent CO2 hydrogenation to methanol over Cu2O nanocubes supported on ZnO

    Get PDF
    The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.Peer ReviewedPostprint (published version

    Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films

    Get PDF
    We present phonon dispersions, element-resolved vibrational density of states (VDOS) and corresponding thermodynamic properties obtained by a combination of density functional theory (DFT) and nuclear resonant inelastic X-ray scattering (NRIXS) across the metamagnetic transition of B2 FeRh in the bulk material and thin epitaxial films. We see distinct differences in the VDOS of the antiferromagnetic (AF) and ferromagnetic (FM) phase which provide a microscopic proof of strong spin-phonon coupling in FeRh. The FM VDOS exhibits a particular sensitivity to the slight tetragonal distortions present in epitaxial films, which is not encountered in the AF phase. This results in a notable change in lattice entropy, which is important for the comparison between thin film and bulk results. Our calculations confirm the recently reported lattice instability in the AF phase. The imaginary frequencies at the XX-point depend critically on the Fe magnetic moment and atomic volume. Analyzing these non vibrational modes leads to the discovery of a stable monoclinic ground state structure which is robustly predicted from DFT but not verified in our thin film experiments. Specific heat, entropy and free energy calculated within the quasiharmonic approximation suggest that the new phase is possibly suppressed because of its relatively smaller lattice entropy. In the bulk phase, lattice degrees of freedom contribute with the same sign and in similar magnitude to the isostructural AF-FM phase transition as the electronic and magnetic subsystems and therefore needs to be included in thermodynamic modeling.Comment: 15 pages, 12 figure
    • 

    corecore