42 research outputs found

    CS 646-852: Network Protocols Security

    Get PDF

    Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest

    Get PDF
    The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states

    Fast Proxy Re-Encryption for Publish/Subscribe Systems

    Get PDF
    We develop two IND-CPA-secure multi-hop unidirectional Proxy Re-Encryption (PRE) schemes by applying the Ring-LWE (RLWE) key switching approach from the homomorphic encryption literature. Unidirectional PRE is ideal for secure publish-subscribe operations where a publisher encrypts information using a public key without knowing upfront who the subscriber will be and what private key will be used for decryption. The proposed PRE schemes provide a multi-hop capability, meaning that when PRE-encrypted information is published onto a PRE-enabled server, the server can either delegate access to specific clients or enable other servers the right to delegate access. Our first scheme (which we call NTRU-ABD-PRE) is based on a variant of the NTRU-RLWE homomorphic encryption scheme. Our second and main PRE scheme (which we call BV-PRE) is built on top of the Brakerski-Vaikuntanathan (BV) homomorphic encryption scheme and relies solely on the RLWE assumption. We present an open-source C++ implementation of both schemes and discuss several algorithmic and software optimizations. We examine parameter selection tradeoffs in the context of security, runtime/latency, throughput, ciphertext expansion, memory usage, and multi-hop capabilities. Our experimental analysis demonstrates that BV-PRE outperforms NTRU-ABD-PRE both in single-hop and multi-hop settings. The BV-PRE scheme has a lower time and space complexity than existing IND-CPA-secure lattice-based PRE schemes, and requires small concrete parameters, making the scheme computationally efficient for use on low-resource embedded systems while still providing 100 bits of security. We present practical recommendations for applying the PRE schemes to several use cases of ad-hoc information sharing for publish-subscribe operations

    Implementation and evaluation of improved Gaussian sampling for lattice trapdoors

    Get PDF
    We report on our implementation of a new Gaussian sampling algorithm for lattice trapdoors. Lattice trapdoors are used in a wide array of lattice-based cryptographic schemes including digital signatures, attributed-based encryption, program obfuscation and others. Our implementation provides Gaussian sampling for trapdoor lattices with prime moduli, and supports both single- and multi-threaded execution. We experimentally evaluate our implementation through its use in the GPV hash-and-sign digital signature scheme as a benchmark. We compare our design and implementation with prior work reported in the literature. The evaluation shows that our implementation 1) has smaller space requirements and faster runtime, 2) does not require multi-precision floating-point arithmetic, and 3) can be used for a broader range of cryptographic primitives than previous implementations

    Implementing Token-Based Obfuscation under (Ring) LWE

    Get PDF
    Token-based obfuscation (TBO) is an interactive approach to cryptographic program obfuscation that was proposed by Goldwasser et al. (STOC 2013) as a potentially more practical alternative to conventional non-interactive security models, such as Virtual Black Box (VBB) and Indistinguishability Obfuscation. We introduce a query-revealing variant of TBO, and implement in PALISADE several optimized query-revealing TBO constructions based on (Ring) LWE covering a relatively broad spectrum of capabilities: linear functions, conjunctions, and branching programs. Our main focus is the obfuscation of general branching programs, which are asymptotically more efficient and expressive than permutation branching programs traditionally considered in program obfuscation studies. Our work implements read-once branching programs that are significantly more advanced than those implemented by Halevi et al. (ACM CCS 2017), and achieves program evaluation runtimes that are two orders of magnitude smaller. Our implementation introduces many algorithmic and code-level optimizations, as compared to the original theoretical construction proposed by Chen et al. (CRYPTO 2018). These include new trapdoor sampling algorithms for matrices of ring elements, extension of the original LWE construction to Ring LWE (with a hardness proof for non-uniform Ring LWE), asymptotically and practically faster token generation procedure, Residue Number System procedures for fast large integer arithmetic, and others. We also present efficient implementations for TBO of conjunction programs and linear functions, which significantly outperform prior implementations of these obfuscation capabilities, e.g., our conjunction obfuscation implementation is one order of magnitude faster than the VBB implementation by Cousins et al. (IEEE S&P 2018). We also provide an example where linear function TBO is used for classifying an ovarian cancer data set. All implementations done as part of this work are packaged in a TBO toolkit that is made publicly available

    Contributing Authors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45099/1/10626_2005_Article_1570.pd

    Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme

    Get PDF
    Homomorphic encryption is an emerging form of encryption that provides the ability to compute on encrypted data without ever decrypting them. Potential applications include aggregating sensitive encrypted data on a cloud environment and computing on the data in the cloud without compromising data privacy. There have been several recent advances resulting in new homomorphic encryption schemes and optimized variants. We implement and evaluate the performance of two optimized variants, namely Bajard-Eynard-Hasan-Zucca (BEHZ) and Halevi-Polyakov-Shoup (HPS), of the most promising homomorphic encryption scheme in CPU and GPU. The most interesting (and also unexpected) result of our performance evaluation is that the HPS variant in practice scales significantly better (typically by 15%-30%) with increase in multiplicative depth of the computation circuit than BEHZ, implying that the HPS variant will always outperform BEHZ for most practical applications. For the multiplicative depth of 98, our fastest GPU implementation performs homomorphic multiplication in 51 ms for 128-bit security settings, which is faster by two orders of magnitude than prior results and already practical for cloud environments supporting GPU computations. Large multiplicative depths supported by our implementations are required for applications involving deep neural networks, logistic regression learning, and other important machine learning problems

    Implementing conjunction obfuscation under entropic ring LWE

    Get PDF
    We address the practicality challenges of secure program obfuscation by implementing, optimizing, and experimentally assessing an approach to securely obfuscate conjunction programs proposed in [1]. Conjunction programs evaluate functions f(x1,...,xL)=iIf (x_1, . . . , x_L) = \wedge_{i \in I} yiy_i, where yiy_i is either xix_i or ¬xi\neg x_i and I[L]I \subseteq [L], and can be used as classifiers. Our obfuscation approach satisfies distributional Virtual Black Box (VBB) security based on reasonable hardness assumptions, namely an entropic variant of the Ring Learning with Errors (Ring-LWE) assumption. Prior implementations of secure program obfuscation techniques support either trivial programs like point functions, or support the obfuscation of more general but less efficient branching programs to satisfy Indistinguishability Obfuscation (IO), a weaker security model. Further, the more general implemented techniques, rather than relying on standard assumptions, base their security on conjectures that have been shown to be theoretically vulnerable. Our work is the first implementation of non-trivial program obfuscation based on polynomial rings. Our contributions include multiple design and implementation advances resulting in reduced program size, obfuscation runtime, and evaluation runtime by many orders of magnitude. We implement our design in software and experimentally assess performance in a commercially available multi-core computing environment. Our implementation achieves runtimes of 6.7 hours to securely obfuscate a 64-bit conjunction program and 2.5 seconds to evaluate this program over an arbitrary input. We are also able to obfuscate a 32-bit conjunction program with 53 bits of security in 7 minutes and evaluate the obfuscated program in 43 milliseconds on a commodity desktop computer, which implies that 32-bit conjunction obfuscation is already practical. Our graph-induced (directed) encoding implementation runs up to 25 levels, which is higher than previously reported in the literature for this encoding. Our design and implementation advances are applicable to obfuscating more general compute-and-compare programs and can also be used for many cryptographic schemes based on lattice trapdoors

    PSPACE-completeness of Modular Supervisory Control Problems*

    Full text link
    In this paper we investigate computational issues associated with the supervision of concurrent processes modeled as modular discrete-event systems. Here, modular discrete-event systems are sets of deterministic finite-state automata whose interaction is modeled by the parallel composition operation. Even with such a simple model process model, we show that in general many problems related to the supervision of these systems are PSPACE-complete. This shows that although there may be space-efficient methods for avoiding the state-explosion problem inherent to concurrent processes, there are most likely no time-efficient solutions that would aid in the study of such “large-scale” systems. We show our results using a reduction from a special class of automata intersection problem introduced here where behavior is assumed to be prefix-closed. We find that deciding if there exists a supervisor for a modular system to achieve a global specification is PSPACE-complete. We also show many verification problems for system supervision are PSPACE-complete, even for prefix-closed cases. Supervisor admissibility and online supervision operations are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45090/1/10626_2004_Article_6210.pd

    OpenFHE: Open-Source Fully Homomorphic Encryption Library

    Get PDF
    Fully Homomorphic Encryption (FHE) is a powerful cryptographic primitive that enables performing computations over encrypted data without having access to the secret key. We introduce OpenFHE, a new open-source FHE software library that incorporates selected design ideas from prior FHE projects, such as PALISADE, HElib, and HEAAN, and includes several new design concepts and ideas. The main new design features can be summarized as follows: (1) we assume from the very beginning that all implemented FHE schemes will support bootstrapping and scheme switching; (2) OpenFHE supports multiple hardware acceleration backends using a standard Hardware Abstraction Layer (HAL); (3) OpenFHE includes both user-friendly modes, where all maintenance operations, such as modulus switching, key switching, and bootstrapping, are automatically invoked by the library, and compiler-friendly modes, where an external compiler makes these decisions. This paper focuses on high-level description of OpenFHE design, and the reader is pointed to external OpenFHE references for a more detailed/technical description of the software library
    corecore