
Implementing Conjunction Obfuscation under
Entropic Ring LWE

David Bruce Cousins∗, Giovanni Di Crescenzo†, Kamil Doruk Gür‡, Kevin King§,
Yuriy Polyakov‡‖, Kurt Rohloff‡‖, Gerard W. Ryan‡ and Erkay Savaş†¶

∗ Raytheon BBN Technologies, dave.cousins@raytheon.com
† Applied Communication Sciences / Vencore Labs, gdicrescenzo@vencorelabs.com

‡ NJIT Cybersecurity Research Center, New Jersey Institute of Technology,

{kg365,polyakov,rohloff,gwryan}@njit.edu
§ Massachusetts Institute of Technology, kcking@mit.edu

¶ Sabancı University, erkays@sabanciuniv.edu
‖ Corresponding Authors

Abstract—We address the practicality challenges of secure
program obfuscation by implementing, optimizing, and experi-
mentally assessing an approach to securely obfuscate conjunction
programs proposed in [1]. Conjunction programs evaluate func-
tions f (x1, . . . , xL) =

∧
i∈I yi, where yi is either xi or ¬xi and

I ⊆ [L], and can be used as classifiers. Our obfuscation approach
satisfies distributional Virtual Black Box (VBB) security based
on reasonable hardness assumptions, namely an entropic variant
of the Ring Learning with Errors (Ring-LWE) assumption. Prior
implementations of secure program obfuscation techniques sup-
port either trivial programs like point functions, or support the
obfuscation of more general but less efficient branching programs
to satisfy Indistinguishability Obfuscation (IO), a weaker security
model. Further, the more general implemented techniques, rather
than relying on standard assumptions, base their security on
conjectures that have been shown to be theoretically vulnerable.

Our work is the first implementation of non-trivial program
obfuscation based on polynomial rings. Our contributions in-
clude multiple design and implementation advances resulting
in reduced program size, obfuscation runtime, and evaluation
runtime by many orders of magnitude. We implement our
design in software and experimentally assess performance in
a commercially available multi-core computing environment.
Our implementation achieves runtimes of 6.7 hours to securely
obfuscate a 64-bit conjunction program and 2.5 seconds to
evaluate this program over an arbitrary input. We are also
able to obfuscate a 32-bit conjunction program with 53 bits of
security in 7 minutes and evaluate the obfuscated program in 43
milliseconds on a commodity desktop computer, which implies
that 32-bit conjunction obfuscation is already practical. Our
graph-induced (directed) encoding implementation runs up to 25
levels, which is higher than previously reported in the literature
for this encoding. Our design and implementation advances are
applicable to obfuscating more general compute-and-compare
programs and can also be used for many cryptographic schemes
based on lattice trapdoors.

I. INTRODUCTION

Program obfuscation has long been of interest in the cyber-

security community. Obfuscated programs should be difficult

to reverse engineer, and should protect intellectual property

contained in software from theft. This prevents the identifica-

tion of exploits usable by adversaries.

For many years practical program obfuscation techniques

have been heuristic and have not provided secure approaches to

obfuscation based on the computational hardness of mathemat-

ical problems, similar to how cryptography has provided data

security based on the computational hardness assumptions.

Prior techniques are discussed in [2], [3], [4], [5], [6], [7].

Although often usable in practice, these prior approaches

do not provide strong security guarantees, and can often be

defeated without large computational effort. For example, [8],

[9], [10], [11], [12] all provide methods to defeat heuristic

software obfuscation.

There have been multiple recent attempts to develop cryp-

tographically secure approaches to program obfuscation based

on the computational hardness of mathematical problems. See

[13] for a survey of these recent approaches. There are multiple

definitions used for obfuscation in these recent approaches.

Two prominent definitions are Virtual Black Box (VBB) and

Indistinguishability Obfuscation (IO).

Virtual Black Box (VBB) obfuscation is an intuitive def-

inition of secure program obfuscation where the obfuscated

program reveals nothing more than black-box access to the

program via an oracle [14]. VBB is known to have strong

limitations [15], [16], [17]. The most significant limitation is

that general-purpose VBB obfuscation is unachievable [15].

To address limitations of VBB, Barak et al. [15] define

a weaker security notion of Indistinguishability Obfuscation
(IO) for general-purpose program obfuscation. IO requires

that the obfuscations of any two circuits (programs) of the

same size and same functionality (namely, the same truth

table) are computationally indistinguishable. The IO concept

has been of recent interest, with recent advances to identify

candidate IO constructions based on multi-linear maps [18],

[19], [20], [21], [22], [23], [24]. There has also been recent

work to implement multi-linear map constructions [25], [26],

[27]. Recent results show that these constructions might not

be secure [28], [29], [30], [31], [32], [33], [34], [35], [36].

The only IO construction supporting general functions that

is not subject to any attack to date is the work by Garg et

354

2018 IEEE Symposium on Security and Privacy

© 2018, David Bruce Cousins. Under license to IEEE.
DOI 10.1109/SP.2018.00007

al. [37]. These cryptographically secure program obfuscation

capabilities have also been considered impractical due to their

computational inefficiency.
There have been attempts to securely obfuscate special-

purpose functions, such as point, conjunction, and evasive

functions, using potentially practical techniques. For example,

there have been several approaches to obfuscating point func-

tions [38], [39], [40], [41], [42]. Unfortunately, point functions

have limited applicability.
We address the practicality challenges of secure program

obfuscation by implementing, optimizing, and experimentally

evaluating an approach proposed in [1] to securely obfus-

cate programs that execute conjunction functions, which are

significantly more complex than point functions. Conjunction

programs evaluate functions f (x1, . . . , xL) =
∧

i∈I yi, where

yi is either xi or ¬xi and I ⊆ [L].
The obfuscation of conjunction programs is explored in

[43] using the graded-encoding (multi-linear map) candidate

construction from [20]. This prior approach is modified for an

approach that is based on a graph-induced multi-linear map

construction in [21] and secure under an entropic variant of

the Ring-LWE assumption [1]. The obfuscation scheme satis-

fies distributional VBB security, meaning that the obfuscated

program reveals nothing more than black-box access to the

conjunction function via an oracle, as long as the conjunction

is chosen from a distribution having sufficient entropy. The

original work [1] focused on theoretical feasibility of con-

junction obfuscation under entropic Ring-LWE and did not

examine practicality issues of the construction.
To address the practicality of obfuscating conjunction pro-

grams, we introduce major design and system-level improve-

ments compared to [1] that enable obfuscation and evaluation

procedures both in server and desktop computing environ-

ments. These improvements include the use of optimized

Gaussian sampling for lattice trapdoors and arbitrary-base

gadget matrix, word-based encoding of programs (instead of

binary encoding), optimized correctness constraint and param-

eter selection, efficient polynomial multiplication in double

Chinese Remainder Transform (CRT) representation, opti-

mized matrix arithmetic, and loop parallelization at multiple

levels of the implementation. We implement this scheme in a

C++ cryptographic library with multi-threading support.
Our implementation achieves runtimes of 6.7 hours to

securely obfuscate a 64-bit conjunction program, and 2.5

sec. to evaluate this program over an arbitrary input in a

server computing environment. The obfuscated program size

is about 750 GB. For a 32-bit conjunction program, we

report the obfuscation runtime of 7.0 min. and evaluation

runtime of 43ms in a desktop computing environment, with

the obfuscated program size under 6 GB.

A. Our Contributions
We implement the conjunction obfuscator on top of PAL-

ISADE1, an open-source lattice cryptography library. We add

new modules in PALISADE including the following:

1https://git.njit.edu/palisade/PALISADE

1) Gaussian lattice trapdoor sampler for power-of-two

cyclotomic rings. This implementation supports arbitrary

moduli, including primes and products of primes, and

performs all computations without explicit generation of

a Cholesky decomposition matrix, which was a bottleneck

of previous implementations based on [44]. Our imple-

mentation also supports a gadget matrix with an arbitrary

base, which is computationally and spatially much more

efficient than the classical binary gadget matrix.

2) Generic integer Gaussian samplers, including recent

Karney’s rejection [45] and constant-time [46] samplers.

These samplers can be used for any integer Gaussian

sampling operation in lattice-based cryptography.

3) Implementation of directed encoding, a special case of

GGH15 multi-linear map construction.

4) Extended Double-CRT support to perform trapdoor

sampling and obfuscation-related operations using native

integer data types.

5) Efficient matrix arithmetic to support fast evaluation of

inputs using the obfuscated conjunction program.

6) Multi-threading and loop parallelization support for all

operations of conjunction obfuscator and certain lower-

level matrix operations.

Our implementation includes several major original design

improvements of the obfuscation scheme [1]:

1) Word encoding of conjunction program compared to the

binary alphabet used in [1], which results in the reduction

of obfuscated program size and obfuscation/evaluation

runtimes by many orders of magnitude.

2) Efficient ring-based trapdoor construction and preim-
age sampling, which substantially reduces the obfusca-

tion runtime and storage requirements.

3) Dramatically reduced dimensions of encoding matri-
ces due to the use of a gadget matrix with a large base,

which allow us to reduce program size and obfusca-

tion/evaluation runtimes by multiple orders of magnitude.

4) Improved bounds on parameters coming from more

careful analysis of the matrix/polynomial products and

use of the Central Limit Theorem.

B. Related Work

Prior implementation work on secure program obfuscation

beyond point obfuscation includes [25], [26], [27].

The first imlementation attempt [25] is based on the CLT13

encoding [47]. The authors build a branching program (BP)

that obfuscates point functions. The obfuscation time for a 14-

bit point function and 60-bit security is 9 hours, the program

size is 31 GB and the evaluation of a single input takes

3.3 hours. Better results are reported in [26] which shows a

framework for BP obfuscation using both CLT13 and GGH13

[48] multi-linear map encodings. The obfuscation time for an

80-bit point function using CLT13 with 80-bit security is 3.3

hours, obfuscated program size is 8.3 GB and evaluation time

is 180 seconds. Note that the above two studies implement

multi-linear map constructions to IO not believed to be secure

[28], [29], [30], [31], [32], [33].

355

Halevi et al. [27] present an implementation of a simplified

variant of GGH15 [21] to obfuscate oblivious read-once BPs,

i.e., nondeterministic finite automata, of at most 80 bits

with over 100 states. The GGH15 encoding is more efficient

than CLT13 and GGH13 for larger numbers of states (over

approximately 50 states), and presently appears to be immune

to existing attacks in the obfuscation scenarios. Obfuscation

takes 23 days, obfuscated program size is 9 TB, and evaluation

takes 25 min. The maximum BP length is 20.

Our implementation is based on GGH15 [21] and entropic

Ring-LWE, which is different from [25], [26]. We use a

different security model for the obfuscation of a special-

purpose function satisfying distributional VBB security, rather

than BP obfuscation satisfying IO. Hence, results can be

compared only indirectly. The results of this comparison are:

1) Our evaluation time for a 64-bit conjunction program

(2.5 seconds), which is often the main runtime metric

when assessing the practicability of program obfuscation,

is significantly smaller than the one reported in [27] for

the same bit length (949 seconds) and is smaller than the

runtime for an 80-bit point function with 80-bit security

in [26] (180 seconds).

2) Our evaluation time for 20 levels of directed encoding

for binary alphabet (188 seconds) is also smaller than the

corresponding evaluation time in [27] (1514 seconds).

3) Our obfuscation time for a 64-bit pattern is 6.7 hours vs.

87 hours in [27].

4) The number of states supported by the conjunction ob-

fuscator can be much higher than 100 (which is larger

than in [25], [26], [27]) and is an exponential function of

the number of “wildcards” in the conjunction pattern.

5) Our conjunction obfuscation does not include any ran-

domizing as in BP obfuscation and, hence, requires the

conjunction pattern to have high entropy to be VBB-

secure, which is a drawback of our approach.

Although we take a software-only-based approach to pro-

gram obfuscation, hardware-based approaches are also feasi-

ble. The work [49] achieves simulation-secure obfuscation for

RAM programs using secure hardware to circumvent previous

impossibility results.

There are related efforts to provide designs and implemen-

tations of obfuscation capabilities. Many building blocks of

our implementation can be used to obfuscate compute-and-

compare programs, a generalization of conjunctions, using the

recently proposed construction based on LWE [50]. Another

similar generalization is lockable obfuscation [51]. These more

general constructions have not been implemented yet.

C. Organization

The rest of the paper is organized as follows: Section

II provides the preliminaries of conjunction programs and

lattices. Section III describes the conjunction obfuscator un-

der entropic Ring-LWE and introduces our word encoding

optimization. Section IV presents our optimizations of lattice

trapdoor sampling focusing on the G-lattice generalization to

arbitrary bases. Section V discusses the selection of parameters

Output: 1

Output: 0

0

0

1

0

1

0

0

1

0
1

1

1

1

0Start

Fig. 1: Sample conjunction program that accepts [0�1�].

to optimize program size and runtimes. Section VI discusses

our algorithms for efficient polynomial and matrix operations.

Sections VII and VIII provide implementation details and

performance evaluation of conjunction obfuscator. The paper

concludes in Section IX. Appendices provide pseudocode for

trapdoor sampling and conjunction obfuscation procedures,

experimental results for integer Gaussian sampling, and deriva-

tion details.

II. PRELIMINARIES

A. Conjunction Programs and Their Applications

We define a conjunction as a function on L-bit inputs,

specified as f (x1, . . . , xL) =
∧

i∈I yi, where yi is either xi

or ¬xi and I ⊆ [L]. The conjunction program checks that

the values xi : i ∈ I match some fixed pattern while the

values with indices outside I can be arbitrary. We represent

conjunctions further in the paper as vectors v ∈ {0, 1, �}L,

where we define Fv (x1, . . . , xL) = 1 iff for all i ∈ [L] we

have xi = vi or vi = �. We refer to � as a “wildcard”.

Conjunctions are used in machine learning to execute or

approximate classes of classifiers [52], [53]. We can repre-

sent linear classifiers as conjunction programs, and we have

used obfuscated conjunction programs to support Optical

Character Recognition (OCR) applications on the standard

MNIST dataset, for example, [54]. In this application, we use

principal component analysis (PCA) techniques to construct

a hypercube linear classifier for specific characters that we

obfuscate using our conjunction obfuscation technique.

Figure 1 shows a sample conjunction program represented

as the accepting language of a finite state machine where

binary inputs drive state transitions. In this example the

program accepts the input string [0�1�], where � represents a

“wildcard input”. This program accepts all 4-bit strings where

the first bit is a 0 and the third bit is a 1. The second and

fourth bits in the program are wildcards, meaning either 0 or

1 inputs in these locations can lead to accepting states.

We discuss below how one can group bits into larger

alphabets of inputs using word encoding and we are not bound

to binary inputs for conjunction programs. With these larger

encodings, conjunction programs can be used to represent

L∞-norm and hypercube description region classifiers, among

others [55], [56].

B. Cyclotomic Rings

Our implementation utilizes cyclotomic polynomial rings

R = Z[x]/ 〈xn + 1〉 and Rq = Zq[x]/ 〈xn + 1〉, where n
is a power of 2 and q is an integer modulus. The order of

356

cyclotomic polynomial Φm̂(x) = xn + 1 is m̂ = 2n. The

modulus q is chosen to satisfy q ≡ 1 mod m̂. The elements

in these rings can be expressed in coefficient or evaluation

representation. The coefficient representation of polynomial

a(x) =
∑

i<n aix
i treats the polynomial as a list of all

coefficients a = 〈a0, a1, . . . , an−1〉 ∈ (Z/qZ)
n

. The evalu-

ation representation, also referred to as polynomial Chinese

Remainder Transform (CRT) representation [57], computes the

values of polynomial a(x) at all primitive m̂-th roots of unity

modulo q, i.e., bi = a(ζi) mod q for i ∈ (Z/m̂Z)
∗
. These

cyclotomic rings support fast polynomial multiplication by

transforming the polynomials from coefficient to evaluation

representation in O(n log n) time using Fermat Theoretic

Transform (FTT) [58] and component-wise multiplication.
Lattice sampling works with n-dimensional discrete Gaus-

sian distributions over lattice Λ ⊂ Rn denoted as DΛ,c,σ ,

where c ∈ Rn is the center and σ is the distribution parameter.

At the most primitive level, the lattice sampling algorithms

work with discrete Gaussian distribution DZ,c,σ over integers

with floating-point center c and distribution parameter σ. If

the center c is omitted, it is assumed to be set to zero. When

discrete Gaussian sampling is applied to cyclotomic rings, we

denote discrete Gaussian distribution as DR,σ .
We use Uq to denote discrete uniform distribution over Zq

and Rq . T denotes discrete ternary uniform distribution over

{−1, 0, 1}n. We define k = �log2 q	 as the number of bits

required to represent integers in Zq .

C. Cyclotomic Fields
The perturbation generation procedure in trapdoor sampling

also utilizes cyclotomic fields K2n = Q[x]/ 〈xn + 1〉, which

are similar in their properties to the cyclotomic rings except

that the coefficients/values of the polynomials are rationals

rather than integers. The elements of the cyclotomic fields

also have coefficient and evaluation (CRT) representation, and

support fast polynomial multiplication using variants of the

Fast Fourier Transform (FFT). The evaluation representation

of such rational polynomials in our implementation works with

complex primitive roots of unity rather than the modular ones.

D. Double-CRT Representation
Our implementation utilizes the Chinese Remainder The-

orem (referred to as integer CRT) representation to break

multi-precision integers in Zq into vectors of smaller integers

to perform operations efficiently using native (64-bit) integer

types. We use a chain of same-size prime moduli q0, q1, q2, . . .
satisifying qi ≡ 1 mod m̂. Here, the modulus q is computed

as
∏l−1

i=0 qi, where l is the number of prime moduli needed

to represent q. All polynomial multiplications are performed

on ring elements in polynomial CRT representation where

all integer components are represented in the integer CRT

basis. Using the notation proposed in [59], we refer to this

representation of polynomials as “Double-CRT”.

E. Ring Learning with Errors Problem
Our scheme is based on a special case of the Ring-LWE

problem [60] introduced in Definition 1. Let us define an

operator MakePoly such that for all rings R, if a ∈ Rn, then

MakePoly (a) ∈ R[x] is the polynomial whose coefficients

are the elements of a. If D is a distribution over Rn, then

MakePoly(D) is the respective distribution over R[x].

Definition 1 (PLWEn,m,q,χ). Let n be a power of two,
and let R = Z[x]/ 〈xn + 1〉. Let q = 2ω(log λ), where λ is a
security parameter, be such that q ≡ 1 (mod 2n) and define
Rq = R/qR. Let m ∈ N and let χ be a distribution over
the integers. The PLWEn,m,q,χ problem is the problem of
distinguishing
{(ai, ai · s+ ei (mod xn + 1, q))}i∈[m] from {(ai, ui)}i∈[m],
where s, ei ← MakePoly (χn) and ai, ui ←
MakePoly

(
Zn
q

)
.

In our implementation, we also use a modification of

Definition 1 where s←MakePoly (T). This variant is often

referred to as a small-secret case of Ring-LWE.

Prior to defining the entropic variant of the PLWEn,m,q,χ

problem, we introduce H̃∞ (X|Z) as follows:

Definition 2 (Average Min-Entropy). Let X and Z be (possi-
bly dependent) random variables, the average min-entropy of
X conditioned on Z is

H̃∞ (X|Z) = − log

(
E

z←Z

[
2−H∞(X|Z=z)

])
,

where H∞ (Y) is the min-entropy of random variable Y .

Conceptually the min-entropy is the smallest of the Rényi

family of entropies, which corresponds to the most conser-

vative way of measuring the unpredictability of a set of

outcomes. In this case, we deal with its averaged expression.

The entropic version of the PLWEn,m,q,χ problem is

defined as follows:

Definition 3 (α-Entropic PLWEn,m,q,χ). Let m,n, q, χ be
parameters of λ and Rq as in Definition 1, and let D =
{Dλ} be an efficiently samplable distribution with (x, z) ←
Dλ having x ∈ {0, 1}� for some � = �(λ) and H̃∞ (x|z) ≥
α(λ). The α-entropic PLWEn,m,q,χ problem is to distinguish(

{sj}j∈[�] , z, {(ai, ai · s+ ei)}i∈[m]

)
from (

{sj}j∈[�] , z, {(ai, ui)}i∈[m]

)
,

where sj , ei ←MakePoly (χn), s =
∏

j∈[�] s
xj

j , and
ai, ui ←MakePoly

(
Zn
q

)
.

In our implementation, we use a modification of Definition

3 where sj ←MakePoly (T). This variant will be referred

to as a small-secret case of entropic Ring-LWE.

III. CONJUNCTION OBFUSCATOR

A. Overview

We first formulate the abstract conjunction obfuscator using

the definition developed in [43].

To obfuscate a conjunction Fv with v ∈ {0, 1, �}L, we

perform the following steps:

357

• Choose random short ring elements

{si,b, ri,b : i ∈ [L], b ∈ {0, 1}} subject to si,0 = si,1 if

vi = �.

• Create encodings Ri,b of ri,b and encodings Si,b of si,b ·
ri,b under Ai−1 → Ai (the specific encoding technique

used in our implementation is described in III-B).

• Choose a random short ring element rL+1. Create

an encoding RL+1 of rL+1 and encoding SL+1 of

rL+1

∏L
i=1 si,vi . These encodings are under AL →

AL+1.

We set the obfuscated program to be

Πv =
(
A0, {Si,b,Ri,b}i∈[L],b∈{0,1} ,RL+1,SL+1

)
.

To evaluate
∏

v on an input x ∈ {0, 1}L, we compute

S∗ =

(
L∏

i=1

Si,xi

)
RL+1 , R

∗ =

(
L∏

i=1

Ri,xi

)
SL+1.

If Fv = 1, then both S∗ and R∗ are encodings of the same

value rL+1

∏L
i=1 si,vi under A0 → AL+1, and if Fv = 0, then

S∗ and R∗ are extremely unlikely to encode the same value,

i.e., the probability of this event is negl (λ). Therefore, we can

compute the output of the program by testing the equality of

encoded values using EqualTestA0→AL+1
(S∗,R∗).

B. Ring Instantiation of Directed Encoding

We implement an instantiation of conjunction obfuscator

based on a directed encoding scheme, which is a special

case of GGH15 graph-induced multi-linear maps [21], spe-

cialized to a line. The ring instantiation of the directed

encoding scheme for the case of cyclotomic rings Rq =
Zq[x]/ 〈xn + 1〉, which was originally proposed in [1], is

described below:

• KeyGen
(
1λ, 1d

)
takes as input a security parameter λ and

upper bound d on the number of levels, runs lattice trapdoor

generation algorithm TrapGen
(
1λ

)
(defined in Algorithm

1) and outputs

(PKi,EKi) = (Ai,Ti) ∈ Rq
1×m ×Rm×κ,

where i ∈ {0, . . . , d} and m and κ are two trapdoor-related

parameters explained in Section IV.

• EncodeAi→Ai+1 (Ti, r), where r ∈ R, is performed in two

steps

– Compute bi+1 := rAi+1 + ei+1 ∈ Rq
1×m, where

ei+1 ← DR1×m,σ .

– Output a matrix

Ri+1 ← GaussSamp (Ai,Ti,bi+1, σt, s) ∈ Rm×m,

where GaussSamp is the preimage sampling algorithm

discussed in Section IV and σt and s are distribution

parameters defined in Section V-A.

Note that AiRi+1 = bi+1 = rAi+1 + ei+1 ∈ Rq
1×m.

• REncodeAi→Ai+1

(
1λ

)
is the public encoding procedure

that simply samples a matrix Ri+1 ← DRm×m,σ .

• Mult (R1,R2) = R1R2, where multiplication is performed

over Rq .

• EqualTestA0→Ai
(R1,R2) outputs 1 for “accept” if

‖A0 (R1 −R2)‖∞ ≤ q/8

and 0 for “reject” otherwise. Note that this procedure does

not depend on any Ai, where i > 0.

The correctness of the encoding scheme is shown in [1].

C. Word Encoding Optimization

The original conjunction obfuscation design of [1] uses one

level for each bit in pattern v ∈ {0, 1, �}L. Our first design

improvement is to utilize a larger input encoding alphabet

to reduce the multi-linearity degree of the directed encoding

scheme, i.e., use fewer levels than the length of the pattern.

A naı̈ve approach to extend to a larger alphabet would

be to convert words of w bits into base-2w representation

and then generate 2w encoding matrices for each word. This

method would work for short elements ri,b, where i ∈ [L],
b ∈ {0, . . . , 2w − 1}, and L = �L/w	 is the new effective

length of the pattern. However, short elements si,b, which

encode the wildcard information, need to be generated and

assigned in a more complex manner.

To keep track of bit-level wildcards, we introduce wildcard

subpatterns for each word that share the same short element

si,b. Specifically, we compute a binary mask for each word that

has the wildcard entries set to 1 and all other entries set to

0. Then for every new index b ∈ {0, . . . , 2w − 1} we perform

bitwise AND between b and the mask. If the result is 0 (all

wildcard bits in the word are set to 0), we generate a new

short element si,b. Otherwise, we reuse an existing one. The

pseudocode for this optimization is depicted in Algorithm 7

(Appendix D).

To illustrate the effect of this optimization, consider the case

of 32-bit conjunctions. The binary alphabet encoding method

requires 33 levels of directed encoding. If instead we use 8-bit

words, then the number of directed encoding levels reduces to

5. At the same time, the number of encoding matrices per level

grows from 4 for w = 1 to 512 for w = 8, which increases

the program size. Hence, there is a tradeoff between a lower

multi-linearity degree and the number of encoding matrices,

which both affect the obfuscated program size.

IV. TRAPDOOR SAMPLING

A. Overview and Motivation

The main computational bottleneck of the obfuscation pro-

cedure in the conjunction obfuscation scheme is the preimage

sampling GaussSamp. Also, the dimensions of the encoding

keys and obfuscated program matrices are determined by the

dimension of the lattice trapdoor used for preimage sampling.

Therefore, any advances in this area have a profound effect on

the performance of conjunction obfuscation and many other

program obfuscations schemes.

Our implementation uses a trapdoor sampling approach pro-

posed by Micciancio and Peikert [44] and improved/extended

trapdoor sampling algorithms recently proposed in [61]. In

358

this approach, samples around a target point t in lattice Λ are

generated using an intermediate gadget lattice Gn. The lattice

Λ is first mapped to Gn, then a Gaussian sample is generated

in Gn. The sample is then mapped back to Λ. The linear

function T mapping Gn to Λ is used as the trapdoor. The main

challenge of this approach is that the mapping T produces a

lattice point in Λ with an ellipsoidal Gaussian distribution and

covariance dependent on the transformation T . To generate

spherical samples, the authors apply a perturbation technique

that adds noise with complimentary covariance to the target

point t prior to using it as the center for Gn sampling.

From an implementation perspective, this approach decom-

poses the lattice trapdoor sampling GaussSamp procedure into

two phases: 1) a perturbation sampling stage (SamplePZ),

where target-independent perturbation vectors with a covari-

ance matrix defined by the trapdoor mapping T are generated,

and 2) a target-dependent stage (SampleG) where Gaussian

samples are generated from lattice Gn. The first phase, usually

referred to as perturbation generation [61], can be performed

offline as it does not depend on the target point t. The second

stage, referred to as G-sampling [61], is always performed

online as it depends on the target point.

The prior Gaussian sampling algorithm introduced in [44]

and improved and implemented in [62] has a high computa-

tional complexity for an arbitrary modulus (the SampleG oper-

ation requires O
(
n log3 q

)
primitive operations as compared

to O (n log q) for a power-of-two modulus). Moreover, both

variants of the algorithm have high storage requirements for a

Cholesky decomposition matrix (computed for each trapdoor

pair and used in perturbation sampling) composed of a large

number of multiprecision floating-point numbers. The above

implies that this prior Gaussian sampling approach is not prac-

tical for our implementation of the conjunction obfuscation

construction dealing with non-power-of-two moduli and m
calls to SampleG for each encoding matrix.

We implement a much more efficient approach based on the

trapdoor sampling algorithms recently proposed in [61]. The

SampleG algorithm developed in [61] has O (n log q) com-

plexity for arbitrary moduli (same as for power-of-two moduli

in [44], [62]). The perturbation sampling method proposed in

[61] works with a Cholesky decomposition matrix implicitly

and does not require additional storage. Our trapdoor sampling

implementation is described in the rest of this section.

B. Trapdoor Construction and G-Lattice Representation

The concrete value of dimension m is determined by the

ring trapdoor construction chosen for the implementation. It

is common to write m = m̄ + k, where m̄ is a security

dimension and k denotes the dimension of (binary) gadget

matrix. Two ring constructions were suggested in [44] and

further developed in [62]. The first one, where m̄ = 2 and,

therefore, m = 2 + k, is generated by drawing k samples

(a, ar̂i + êi), where i ∈ [k], from Ring-LWE distribution. The

second construction uses m̄ uniformly random polynomials,

where m̄ is usually set to at least k. As the second construction

requires that m be at least 2k, the Ring-LWE construction

deals with a smaller dimension and is thus preferred for our

implementation.
Note that a different type of ring trapdoor construction was

proposed in [63] based on a non-standard NTRU assumption.

This construction cannot be applied to the conjunction obfus-

cator because the generated samples have a large distribution

parameter, i.e., Θ
(√

q
)
, which prevents one from using the

samples for multiplying the encodings without invalidating the

correctness.
As another major optimization of this work, we introduce

a generalized version of the Ring-LWE construction in [62],

[44]. In our implementation m = 2+κ, where κ = �k/ log2 t	
and t is the base for the gadget lattice Gn (t was set to 2 in

[62]). The use of base t higher than 2 reduces the dimension

of encoding matrices, which dramatically improves all main

performance metrics of the conjunction obfuscator, as shown

in Section V. The algorithmic idea of using an arbitrary base

t was originally suggested in [44] but has not been explored

in implementations based on polynomial rings.
The pseudocode for the Ring-LWE trapdoor construction

is depicted in Algorithm 1. In the pseudocode, r̂ and ê
are the row vectors of secret trapdoor polynomials generated

using discrete Gaussian distribution, A is the public key, and

gT = {g1, g2, . . . , gκ} is the gadget row vector corresponding

to the gadget lattice Gn. The latter is often denoted as simply

G because it is an orthogonal sum of n copies of a low-

dimensional lattice G.

Algorithm 1 Trapdoor generation using Ring-LWE for G
lattice of base t

function TRAPGEN(1λ)

a← Uq ∈ Rq

r̂ := [r̂1, . . . , r̂κ]← DR,σ ∈ R1×κ
q

ê := [ê1, . . . , êκ]← DR,σ ∈ R1×κ
q

A := [a, 1, g1 − (ar̂1 + ê1), . . . , gκ − (ar̂κ + êκ)] ∈
R1×(2+κ)

q

return (A, (r̂, ê))
end function

Although the trapdoor T in the general definition in Section

III-B has dimensions m × κ, for this construction we can

perform all computations with a compact trapdoor T̃ =
(r̂, ê) ∈ Rq

2×κ, as explained in Section IV-E.

C. High-Level Trapdoor Sampling Algorithm
The high-level preimage sampling algorithm adapted for our

lattice trapdoor construction is listed in Algorithm 2. It is based

on the general approach proposed in [44]. Note that we use

the distribution parameter σt, which depends on the base t of

G-lattice. The vector p is the perturbation vector required to

produce spherical samples.
Sections IV-D and IV-E describe in more detail the proce-

dures SampleG and SamplePZ , respectively.

D. Sampling G-lattices
The G-lattice sampling problem is defined as the problem

of sampling the discrete Gaussian distribution on a lattice

359

Algorithm 2 Gaussian preimage sampling

function GAUSSSAMP(A, T̃, b, σt, s)

for i = 0..m− 1 do
p← SamplePZ

(
n, q, s, σt, T̃

)
∈ Rm

q

z← SampleG(σt, bi −Ap, q)
Convert z ∈ Zκ×n to ẑ ∈ Rκ

q

xi := [p1 + êẑ, p2 + r̂ẑ, p3 + ẑ1, . . . , pm + ẑκ]
end for
return x ∈ Rq

m×m

end function

coset Λ⊥
v

(
gT

)
=

{
z ∈ Zκ : gT z = v mod q

}
, where q ≤

tκ, v ∈ Z and g =
(
1, t, t2, . . . , tκ−1

)
. The G-sampling

problem is formulated here for a single integer v rather than

a n-dimensional lattice because each of the n integers can be

sampled in parallel. Our implementation of G-sampling works

with a n-dimensional lattice.

We implement a variation of the G-sampling algorithm

developed in [61], which supports arbitrary bases for G-

lattice. Our variation (depicted in Algorithm 3 of Appendix

A) relies on continuous Gaussian sampling in the internal

perturbation sampling step (in contrast to discrete Gaussian

sampling in Figure 2 of [61]), reduces the number of calls to

polynomial CRT operations, and increases opportunities for

parallel execution.

Algorithm 3 has complexity O (n log q) for an arbitrary

modulus. The main idea of the algorithm is not to sample

Λ⊥
v

(
gT

)
directly, but to express the lattice basis Bq = TD

as the image (using a transformation T) of a matrix D
with a sparse, triangular structure. This technique requires

adding a perturbation with a complementary covariance to

obtain a spherical Gaussian distribution, as in the case of the

GaussSamp procedure described in Algorithm 2. In this prior

work the authors select an appropriate instantiation of D that

is sparse and triangular, and has a complementary covariance

matrix with simple Cholesky decomposition Σ2 = L · LT ,

where L is an upper triangular matrix, and find the entries of

the L matrix in closed form.

E. Perturbation sampling

The lattice preimage sampling algorithm developed in [44]

requires the generation of nm-dimensional Gaussian perturba-

tion vectors p with covariance Σp := s2·I−σ2
t

[
T I

]T ·[TT I
]
,

where T ∈ Z2n×nκ is a matrix with small entries serving as

a lattice trapdoor, s is the upper bound on the spectral norm

of σt

[
TT , I

]T
.

When working with algebraic lattices, the trapdoor T can

be compactly represented by a matrix T̃ ∈ R2×κ
n , where n

denotes the rank (dimension) of the ring Rn. In our case, this

corresponds to the cyclotomic ring of order m̂ = 2n. For the

Ring-LWE trapdoor construction used in our implementation

(Algorithm 1), the trapdoor T̃ is computed as (r̂, ê). The

main challenge with the perturbation sampling techniques

developed in [62], [44] is the direct computation of a Cholesky

decomposition of Σp that destroys the ring structure of the

compact trapdoor and operates on matrices over R.

Genise and Micciancio [61] propose an algorithm that lever-

ages the ring structure of Rn and performs all computations

either in cyclotomic rings or fields over Φ2n(x) = xn + 1.

The algorithm does not require any preprocessing/storage

and runs with time and space complexity quasi-linear in n.

The perturbation sampling algorithm can be summarized in a

modular way as a combination of three steps [61]:

1) The problem of sampling a n(2 + κ)-dimensional Gaus-

sian perturbation vector with covariance Σp is reduced to

the problem of sampling a 2n-dimensional integer vector

with covariance expressed by a 2× 2 matrix over Rn.

2) The problem of sampling with covariance in R2×2
n is

reduced to sampling two n-dimensional vectors with

covariance in Rn.

3) The sampling problem with covariance in Rn is reduced

to sampling n-dimensional perturbation with covariance

expressed by a 2 × 2 matrix over the smaller ring Rn/2

using an FFT-like approach.

We implement a variation of the perturbation generation

algorithm developed in [61]. Our variation (depicted in Algo-

rithm 4 of Appendix A) reduces the number of calls to CRT

operations and increases opportunities for parallel execution.

F. Integer Gaussian Sampling

Our implementations of G-sampling and perturbation sam-

pling procedures require generating integers with Gaussian

distribution for large distribution parameters and varying

centers. For instance, the optimal values of base t lead to

distribution parameters up to 220 for G-sampling and even

larger values for perturbation generation. This implies that

conventional Gaussian sampling techniques such as the in-

version sampling developed in [64] and rejection sampling

proposed in section 4.1 of [65] are not practical for trapdoor

sampling, as described in detail in [46].

To this end, we implement two recently proposed generic

samplers: Karney’s rejection sampler [45] and constant-time

sampler [46].

The rejection sampler [45] provides a relatively low rejec-

tion rate (roughly 0.5) vs. a much higher rate in the case

of rejection sampling [65], and has no additional storage

requirements, at least when it is not separated into offline and

online stages. However, it has a relatively significant variability

in sampling time making it prone to timing attacks.

The generic sampler [46], on the other hand, uses a constant-

time algorithm that breaks down sampling for large distribu-

tion parameters into multiple runs for much smaller distri-

bution parameters. It also utilizes multiple cosets to support

varying-center requirements, with the number of cosets being

an adjustable parameter. At the lowest level, this generic

sampler depends on the implementation of a base sampler for a

small distribution parameter and fixed center, which can be re-

alized using efficient Cumulative Distribution Function (CDF)

inversion [64] or Knuth-Yao [66] methods. This algorithm has

significant memory requirements to store precomputed lookup

360

tables/trees for the base sampler but the storage requirements

can be adjusted at the expense of increased sampling runtime.

The choice of a specific generic sampler in our experiments

is determined by minimizing the obfuscation runtime.

V. SETTING THE PARAMETERS

A. Distribution Parameters

1) Distribution Parameter for Ring-LWE Trapdoor Con-
struction: The trapdoor secret polynomials are generated using

the smoothing parameter σ estimated as σ ≈
√
ln(2nm/ε)/π,

where nm is the maximum ring dimension and ε is the

bound on the statistical error introduced by each randomized-

rounding operation [44]. For nm ≤ 214 and ε ≤ 2−80, we

choose a value of σ ≈ 4.578.

2) Short Ring Elements in Directed Encoding: For short

ring elements si,b, ri,b, we use ternary uniformly random ring

elements, which are sampled over {−1, 0, 1}n. This implies

that we rely on small-secret Ring-LWE for directed encoding.

3) Distribution Parameters for Directed Encoding: To en-

code ternary random elements, we use the smoothing param-

eter σ (for the noise polynomials) defined in Section V-A1.

To encode a product of ternary random ring elements

under the Ring-LWE assumption, we need to sample noise

polynomials using σ′ = ω (log λ)
√
nσ (Section 4.3 of [1]).

The term ω (log λ) guarantees that DR,
√
nσ+σ′ is “smudged”

by Lemma 2.4 of [1] to DR,σ′ . In our implementation, we use

a concrete estimate σ′ = k
√
nσ.

4) Distribution Parameter for G-Sampling: Our G-

sampling procedure requires that σt = (t + 1)σ. This guar-

antees that all integer sampling operations inside G-sampling

use at least the smoothing parameter σ, which is sufficient

to approximate the continuous Gaussian distribution with a

negligible error.

5) Spectral norm s: Parameter s is the spectral norm

used in computing the Cholesky decomposition matrix (it

guarantees that the perturbation covariance matrix is well-

defined). To bound s, we use inequality s > s1 (X)σt, where

X is a sub-Gaussian random matrix with parameter σ [44].

Lemma 2.9 of [44] states that s1 (X) ≤
C0σ

(√
nκ+

√
2n+ C1

)
, where C0 is a constant and

C1 is at most 4.7.

We can now rewrite s as s > C0σσt

(√
nκ+

√
2n+ 4.7

)
.

In our experiments we used C0 = 1.3, which was found

empirically.

B. Conjunction Obfuscator Correctness

The correctness constraint for a conjunction pattern with L
words (L ≥ 2) is expressed as

q > 192σ′ (2s√mn
)L

. (1)

The correctness constraint (1), which is derived using

the Central Limit Theorem, significantly reduces bitwidth

requirements for modulus q (as compared to the analysis

in [1] for a multi-level directed encoding scheme; note also

that no correctness constraint for conjunction obfuscator was

derived in [1]). Hence, our correctness estimate is another

major improvement in this work. The details of deriving the

correctness constraint are provided in Appendix B.

C. Security

1) Ring dimension n: We utilize Ring-LWE for the trap-

door construction and a combination of small-secret Ring-

LWE and an entropic variant of small-secret Ring-LWE for

directed encoding. Since entropic small-secret Ring-LWE is

the strongest assumption, it should determine the value of

the ring dimension n. However, no experimental results for

entropic Ring-LWE are available and hence we assume that

we can use the same lower bounds for λ as for regular (non-

entropic) Ring-LWE. As the directed encoding Ring-LWE

instance uses the ternary distribution T to generate secret

polynomials, our lower-bound estimates of the number of

security bits λ are computed for this variant of Ring-LWE.

We run the LWE security estimator2 (commit 9302d42) [67]

to find the lowest security levels for the uSVP, decoding, and

dual attacks following the standard homomorphic encryption

security recommendations [68]. We choose the least value of λ
for all 3 attacks on classical computers based on the estimates

for the BKZ sieve reduction cost model.

2) Dimension m: The dimension m can be written as m̄+κ,

where m̄ is a security dimension determined by the Ring-LWE

trapdoor construction and κ is a functional parameter.

Consider the Ring-LWE construction constraint. Let us

write the public key A in Algorithm 1 as A =
[
Ā|gT − ĀR

]
,

where A ×
(
R
I

)
= gT . Here, Ā is uniformly random and

R is small. The pseudorandomness of A =
[
Ā|gT − ĀR

]
(required by our application) immediately follows from the

pseudorandomness of
[
Ā|ĀR

]
, which is implied by the Ring-

LWE assumption.

More specifically, we use the Ring-LWE construction from

[44], [62], implying that Ā is represented as [a, 1], i.e., a

1 × 2 matrix over the Ring-LWE ring. Then each column of

ĀR is of the form ci = ar̂i + êi. The pseudorandomness of

(a, ci) follows from Ring-LWE. Since each ci uses a different

“secret” ri, the public value of a can be reused, and joint

pseudorandomness follows by a standard hybrid argument.

This means that the security dimension m̄ = 2, i.e., m = 2+κ,

can be used regardless of dimension κ.

3) Work factors tV BB and tRLWE: We consider two attack

models to learn the full conjunction pattern. The first one

is based on VBB (input-output) analysis, independently of

the underlying cryptographic obfuscation construction. The

second model is based on lattice attacks on the obfuscated

program, i.e., requires solving multiple Ring-LWE problems.

We present here the attacks that result in lowest work factors

tV BB and tRLWE for the VBB and lattice models, respectively

(our analysis showed these attacks correspond to optimal lower

bounds for both models but the formal proofs are beyond the

scope of this paper). The work factors are expressed in terms of

the number of clock cycles to abstract from specific hardware

architectures.

2https://bitbucket.org/malb/lwe-estimator

361

VBB model. The work factor for a specific conjunction

pattern depends on the number of wildcard bits, denoted as

X . If we assume that the conjunction pattern has high entropy,

then the adversary can (on average) run 2L−X random-input

evaluation queries to find a first match, which is equivalent to a

point function with L−X bits. Once the first match is found,

the adversary can run additional L evaluation queries to find

the wildcard positions. Therefore, the VBB work factor can be

estimated as tV BB =
(
2L−X + L

)
teval ≈ 2L−Xteval, where

teval is the number of clock cycles for a single evaluation of

the obfuscated program.

Lattice model. Our most efficient lattice-based attack can

be described as follows:

1) Find all wildcard positions. For each word of w bits, solve

w×2×2 = 4w Ring-LWE problems, where the first factor

of 2 corresponds to bits 0 and 1, and the second factor of

2 corresponds to each encoding matrix for si,b · ri,b and

ri,b, respectively (both ring elements are needed to find

si,b). This procedure is repeated for each word, i.e., L/w
times (for simplicity, we assume w|L), which implies this

step requires a work factor of 2λ+2L.

2) For each word, solve additional 2 × 2w−Xi problems to

find all si,b, where Xi is the number of wildcards in the

i-th word. Some solutions may have already been found

in Step 1 but we can expect their contribution to be small

(to simplify the analysis). The work factor of this step is

2λ+1
∑L/w

i=1 2w−Xi .

3) Solve Ring-LWE problems for rL+1 and rL+1

∏L
i=1 si,vi .

4) Steps 1–2 yield all values of si,b. Now compare 2L−X

products
∏L

i=1 si,b with
∏L

i=1 si,vi found in step 3. The

computation of one product
∏L

i=1 si,b requires approxi-

mately the work factor of
(
2m2

)−1
teval, as can be seen

from Algorithm 8.

The Ring-LWE work factor can then be written as

tRLWE ≈ 2λ+1

⎛⎝L/w∑
i=1

2w−Xi + 2L

⎞⎠+
2L−Xteval

2m2
.

For conjunction obfuscation with at least 80 bits of security,

the following constraints have to be satisfied: tRLWE ≥
tV BB ≥ 280. Note that for a 2.5 GHz core, 280 clock cycles

correspond to 1.4× 107 core-years.

4) Small-Secret Ring-LWE vs Error-Secret Ring-LWE for
Directed Encoding: Our implementation also supports integer

Gaussian distribution DR,σ for short ring elements si,b, ri,b,

i.e., the error-secret Ring-LWE (Definition 1). This variant

increases the modulus q, more specifically the parameter Be in

expression (5), by a factor of σ
√
γ (γ is explained in Section

V-B), which is only 5 bits for our parameters.

According to our estimates using [67], error-secret and

small-secret Ring-LWE require almost the same bitwidth for

q to achieve the same level of security for practical ring

dimensions (the modulus q is at most 4 bits larger for small-

secret Ring-LWE). Hence, both small-secret and error-secret

Ring-LWE variants can be used without any major difference

in program size or runtimes (none of the performance metrics

increase by more than 15% for the error-secret case according

to our experimental analysis), achieving approximately the

same level of security according to LWE estimator [67].

We choose the small-secret Ring-LWE case for our main

experiments because it is slightly more efficient than the error-

secret Ring-LWE scenario and is currently believed to be as

secure against known attacks.

D. Word Size w

The selection of word size w is governed by the tradeoff

between the decrease in multi-linearity degree (L+ 1) and

increase in the number of encoding matrices.

To find the optimal value of w, we introduce a formal

definition of theoretical program size Σtheor (in bytes):

Σtheor (Πv) =
1

4
(2w · L+ 1) (2 + κ)

2
nk. (2)

The first multiplicand accounts for the number of encoding

matrices, the second multiplicand represents the number of

ring elements per encoding matrix, and the last term nk
deals with the storage for each ring element. This theoretical

program size is generally slightly smaller than the actual stor-

age consumed in an implementation (due to storage overhead

related to the size of underlying native integers and extra data

members in C++ classes).

We consider the program size as the main practical limita-

tion of conjunction obfuscator due to the high size estimates

(in Terabytes) listed in Tables I and II, which are found

for the G-lattice base t of 2 (larger bases are discussed in

Section V-E) and all other parameters computed using the

input parameters and constraints described in Sections V-A–

V-C. These estimates imply that w = 4 and w = 8 produce

the smallest program sizes.

In addition to obfuscated program size, we should consider

the evaluation runtime as another optimization constraint. The

evaluation runtime is proportional to L (2 + κ)
2
nk, which

implies that smaller L, n, and k reduce the runtime. Therefore,

the case of w = 8 is optimal for our experiments when the

combined effect of obfuscated program size and evaluation

runtime is considered.

Tables I and II suggest that the use of w = 8 instead

of w = 1 reduces the program size by more than 2 and 3

orders of magnitude for 32-bit and 64-bit conjunction patterns,

respectively. The proportionality of evaluation runtime to

L (2 + κ)
2
nk suggests that the runtime is reduced by about

4 orders of magnitude when switching from w = 1 to w = 8
both for 32-bit and 64-bit conjunction programs.

E. G-Lattice Base t

Larger values of G-lattice base t decrease the dimension

of public key A0, encoding secret keys T̃i, and encoding

matrices Ri, where i corresponds to the level of directed

encoding. More concretely, the sizes of A0, T̃i, and Ri

are proportional to (2 + κ)nk, κnk, and (2 + κ)
2
nk, respec-

tively. Here, κ = �k/ log2 t	 and k is the number of bits in

362

TABLE I: Program size as a function of word size for 32-bit

conjunctions (with λ > 80 bits and t = 2)

w L k n Σtheor (Πv), Terabytes

1 32 1041 32768 617
2 16 505 16384 36
4 8 248 8192 5
8 4 127 4096 3

16 2 70 2048 42
32 1 45 2048 294,900

TABLE II: Program size as a function of word size for 64-bit

conjunctions (with λ > 80 bits and t = 2)

w L k n Σtheor (Πv), Terabytes

1 64 2204 65536 22,200
2 32 1049 32768 1,230
4 16 505 16384 142
8 8 248 8192 77

16 4 127 4096 792
32 2 70 2048 2,730,000

modulus q. The program size, obfuscation time, and evaluation

time are determined by the size of Ri.

When t is increased, the term (2 + κ)
2

in the size of

Ri becomes smaller but the modulus bitwidth k and ring

dimension n grow as follows from expression (1) and security

analysis for n (Section V-C1). The correctness constraint (1)

suggests that q is proportional to (t+ 1)
L

, which means that k
grows linearly with log2 t. This implies that the size of Ri, and

hence the obfuscation program size, is always reduced with

increase in t. The maximum practical value of t is reached

when one of the following conditions is met:

1) Evaluation runtime becomes inadequately slow (as it is

proportional to kn);

2) Implementation limitations of integer Gaussian sampling

are reached, for instance, the samples start exceeding the

bitwidth of a native integer data type;

3) The value of κ reaches 2 (m = 4), which is the smallest

value supported by our perturbation sampling procedure.

It should be pointed out that the choice of t also depends

on the value of the most significant digit of modulus q with

respect to base t, which affects the value of dκ−1 in Algorithm

3. For the worst-case analysis, assume that qκ−1 = 1, then

dκ−1 ≈ 1/t. Once this value is substituted into SampleD,

zκ−1 is sampled using a distribution parameter ≈ σt. Then the

term q0zκ−1 in the expression for t0 in SampleG may reach

values that are proportional to σt2, which are much higher

than one would expect, i.e., comparable to σt.
To avoid this scenario, we introduce an additional constraint

qκ−1/t > 1/ζ, where ζ is a constant. In our experiments, we

set ζ = 2, which implies qκ−1 has at most one bit less than t.
We also performed a combined optimization analysis for

word size w and G-lattice base t, which confirmed that w = 8
is still the optimal value for t > 2.

We use the highest value of t = 220 in our experiments

due to the limitations of our implementation of Gaussian

sampling, which operates with native C++ unsigned integers,

and selected bitwidth of prime moduli in the Double-CRT

representation. If these constraints are removed, higher values

of G-lattice base t can be used.

VI. EFFICIENT MATRIX AND POLYNOMIAL ARITHMETIC

A. Matrix Chain Product in the Evaluation

The matrix chain multiplication in the evaluation operation

involves multiplications of encoding matrices of m × m by

each other, which requires a running time of O
(
m3n

)
for the

naive implementation or O
(
mlog2 7n

)
in the case of Strassen’s

algorithm. At the same time, the product of encoding matrices

is multiplied at the end by a row vector A0 ∈ Rq
1×m. This

suggests that by changing the order of multiplications, we can

transform this matrix chain multiplication into a row-vector-

by-matrix chain product. Each row-vector-by-matrix product

has a running time of O
(
m2n

)
and can provide a running

time improvement by a factor of m, as compared to the

naive implementation of matrix product. This optimization is

included in Algorithm 8 listed in Appendix D. A similar idea

was used in [25], [26].

B. Efficient Polynomial Arithmetic

1) Double-CRT Operations: All polynomial multiplications

are performed in the Double-CRT representation. We use the

bitwidth of 60 for each prime modulus (64-bit native unsigned

integers are leveraged for storing the numbers). This implies

a product of two polynomials with ring dimension n and

modulus q (bitwidth k) requires n�k/60	 multiplications of

64-bit native integers, i.e., scales almost linearly with increase

in k. Hence, multiplications of polynomials with large k,

for example, 1000 bits, can be supported without involving

multiprecision arithmetic.

There are certain operations where we have to switch from

Double-CRT representation to a polynomial of multiprecision

integers with a large modulus q. This requires transforming

all small-modulus polynomials to the coefficient representa-

tion and then performing the CRT interpolation to get large

(multiprecision) coefficients of the polynomial with respect to

modulus q. This procedure is computationally expensive and

involves �k/60	 NTTs followed by the CRT interpolation with

modulo reductions for every coefficient with respect to q. The

two operations requiring CRT Interpolation are (1) G-sampling

where the digits of the large coefficients are extracted and (2)

infinity norm computation at the last stage of evaluation.

2) Number Theoretic Transform: The multiplication of ele-

ments in cyclotomic rings Rpi
is performed using the Chinese

Remainder Transform (CRT) [57]. We use an implementation

of Fermat Theoretic Transform (FTT) described in [58]. We

implement FTT with Number Theoretic Transform (NTT) as

a subroutine. For NTT, we use the iterative Cooley-Tukey

algorithm with optimized butterfly operations, which is im-

plemented in PALISADE.

3) Cyclotomic Fields: For multiplications in K2n we use

the iterative Cooley-Tukey FTT algorithm over complex prim-

itive roots of unity.

363

To convert elements of rings to fields, we switch the poly-

nomials from the evaluation representation to the coefficient

one as an intermediate step because the CRTs for rings operate

with modular primitive roots of unity and CRTs for fields deal

with complex primitive roots of unity.
4) Polynomial Transposition: Element transposition for a

polynomial f(x) = f0+f1x+· · ·+fn−1x
n−1 over cyclotomic

polynomial xn+1 is expressed as f t(x) = f0−fn−1x−· · ·−
f1x

n−1. This transposition technique was used for both rings

and fields. In our implementation the transposition operation

is performed directly in evaluation representation by applying

an automorphism from f(ζ2n) to f(ζ2n−1
2n).

5) Modular Arithmetic: For modular reduction of multi-

precision integers (in CRT interpolation), we use a generalized

Barrett modulo reduction algorithm [69]. This approach re-

quires one pre-computation per NTT run and converts modulo

reduction to roughly two multiplications.

VII. IMPLEMENTATION DETAILS

A. Pseudocode of Obfuscation Scheme Algorithms
We provide pseudocode for key generation, encoding, ob-

fuscation, and evaluation of the scheme in Appendix D. The

pseudocode matches our implementation in C++.

B. Integer sampling
Both conjunction obfuscation and trapdoor sampling algo-

rithms call the integer sampling subroutine SampleZ(σ, c) that

returns a sample statistically close to DZ,c,σ. When the center

c does not change and distribution parameter is small (as in

directed encoding or Ring-LWE trapdoor construction), our

SampleZ implementation uses the inversion sampling method

developed in [64]. In all other cases (trapdoor sampling), we

use either Karney’s rejection sampler [45] or constant-time

sampler [46].
A bottleneck of integer sampling operations in lattice-

based cryptography, specifically those called in the subroutines

of GaussSamp, is the use of multiprecision floating-point

numbers where the number of bits in the mantissa should

roughly match the number of security bits supported by the

cryptographic protocol. A recent theoretical result in [46]

suggests that both the G-sampling and perturbation generation

algorithms used in our implementation can support at least

100 bits of security using double-precision floating point arith-

metic. More specifically, Lemma 3.2 in [46] states that λ/2
significant bits in a floating-point number is sufficient for λ bits

of security. This result also applies to joint (possibly depen-

dent) distributions, as in Lemma 4.3 of [46]. Because we are

not attempting to exceed 100 bits of security, the significand

precision of 53 bits provided by IEEE 754 double-precision

floating numbers is sufficient for our security target. Therefore,

our implementation of integer Gaussian sampling performs

computations on double-precision floating-point numbers.

C. Software Implementation
We implement the conjunction obfuscation scheme in PAL-

ISADE, an open-source lattice cryptography library. PAL-

ISADE uses a layered approach with four software layers, each

including a collection of C++ classes to provide encapsulation,

low inter-class coupling and high intra-class cohesion. The

software layers are as follows:

1) The cryptographic layer supports cryptographic protocols

such as homomorphic encryption schemes through calls

to lower layers.

2) The encoding layer supports plaintext encodings for cryp-

tographic schemes.

3) The lattice constructs layer supports power-of-two and

arbitrary cyclotomic rings (coefficient, CRT, and double-

CRT representations). Lattice operations are decomposed

into primitive arithmetic operations on integers, vectors,

and matrices here.

4) The arithmetic layer provides basic modular operations

(multiple multiprecision and native math backends are

supported), implementations of Number-Theoretic Trans-

form (NTT), Fermat-Theoretic Transform (FTT), and

Bluestein FFT. The integer distribution samplers are

implemented in this layer.

Our conjunction obfuscation implementation is a new PAL-

ISADE module called “trapdoor”, which includes the follow-

ing new features broken down by layer:

• Conjunction obfuscation scheme in the cryptographic

layer.

• Directed encoding in the encoding layer.

• Trapdoor sampling, including Ring-LWE trapdoor gen-

eration, G-sampling and perturbation generation routines

in the lattice layer. Cyclotomic fields K2n and additional

polynomial/double-CRT operations, such as polynomial

transposition, are also in this layer.

• Generic integer Gaussian samplers and a Cooley-Tukey

transform based on complex roots of unity in the arith-

metic layer.

Several lattice-layer and arithmetic-layer optimizations are

also applied for runtimes improvements.

D. Loop parallelization

Multi-threading is performed using OpenMP3. Loop paral-

lelization is applied to parallelize obfuscation, lattice, and ma-

trix operations, and we use the following loop parallelization

optimizations:

1) In KeyGen (Algorithm 5), the loop calling TrapGen is

parallelized, with its results combined in an ordered way

into an STL vector.

2) In GaussSamp (Algorithm 2), the main loop is executed

in parallel. The loop is called by Encode, which is called

by Obfuscate. This optimization effectively achieves the

overall parallel execution of the obfuscation procedure.

3) The loops in matrix and matrix-vector multiplication are

parallelized. This optimization determines the paralleliza-

tion of Evaluate (Algorithm 8).

4) Number-theoretic transforms of matrices (vectors) of ring

elements are executed in parallel for each ring element.

3http://www.openmp.org/

364

This optimization applies to key generation, obfuscation,

and evaluation operations.

5) CRT Interpolation used in G-sampling (Obfuscate) and

norm computation (Evaluate) is executed in parallel for

each coefficient of the polynomial.

We discuss the effect of these optimizations in Sec. VIII-E.

VIII. EXPERIMENTAL RESULTS

A. Testbed

Experiments were performed using a server computing

environment with 4 sockets of Intel Xeon CPU E7-8867 v3

rated at 2.50GHz, each with 16 cores. The total number of

cores was 64 (128 logical processors). 2TB of RAM was

accessible for the experiment. The executable was run using a

docker image with Linux Ubuntu 16.04 LTS. The evaluation

environment for parallelization experiments was a commodity

desktop computer with an Intel Core i7-3770 CPU with 4

cores (8 logical processors) rated at 3.40GHz and 16GB of

memory, running Linux CentOS 7. In all of our obfuscation

experiments, we selected the minimum modulus bitwidth k
that satisfies the correctness constraint (1) for a ring dimension

n corresponding to the chosen security level.

B. Integer Gaussian Sampling Experiments

We experimentally compared the runtimes of Karney’s

rejection method [45] with the generic sampler [46] using the

CDF inversion [64] method as the base sampler. The results are

in Appendix C. Based on this analysis, we selected Karney’s

method for our main conjunction obfuscation experiments.

C. Experiments for the Word Size of One Byte

Tables III and IV show results for the word size w of 8

bits in the server computing environment for 32-bit and 64-

bit conjunction programs, respectively. Σexp (Πv) is the actual

program size (experimentally measured as the RAM amount

used by the process after the obfuscation program is gener-

ated). These experiments were run in the multi-threaded mode

with 16 and 32 threads for 32-bit and 64-bit conjunctions,

respectively.

Tables III and IV also list the work factors (in bits of

security) for the VBB and lattice attacks, which are computed

as λV BB = log2 (tV BB) and λRLWE = log2 (tRLWE),
respectively. For 32-bit and 64-bit conjunctions, the number of

wildcard bits was set to 8 and 16, respectively. The wildcard

bits were assumed to be uniformly distributed over the words

of the pattern (2 wildcard bits per byte).

Table III suggests that lattice security parameters for 32-

bit conjunctions are sufficient to match the VBB security, but

the VBB work factor for the case of n = 1024 is only 253

clock cycles, which corresponds to 39 core-days for a 2.5

GHz core. Table IV shows that the lattice attack work factor

starts exceeding the VBB work factor for 64-bit conjunctions

at n = 8192, when the VBB work factor is 273 clock cycles,

i.e., 1.1× 105 core-years.

Note that our implementation is based on the entropic Ring-

LWE problem with a small-secret (ternary) distribution, which

TABLE III: Runtimes and program size for 32-bit conjunction

programs in a server computing environment for w=8

n k log2 t λV BB / Σexp (Πv) KeyGen Obfuscate Evaluate
λRLWE (GB) (ms) (min) (ms)

1024 180 20 53/54 5.85 94 6.2 32
2048 180 15 54/56 16.4 411 17.3 60
4096 180 15 55/86 37.9 1141 36.0 117

TABLE IV: Runtimes and program size for 64-bit conjunction

programs in a server computing environment for w=8

n k log2 t λV BB / Σexp (Πv) KeyGen Obfuscate Evaluate
λRLWE (GB) (s) (hr) (s)

1024 360 20 70/60 77 0.31 0.7 0.29
2048 360 20 71/61 155 0.66 1.4 0.53
4096 360 18 72/62 374 1.58 3.3 1.06
8192 360 18 73/87 748 3.03 6.7 2.45

is a stronger assumption than Ring-LWE. While our work

factor estimates already incorporate the effect of small-secret

distribution (using the LWE estimator [67]), the effect of the

entropic variant of Ring-LWE on the work factor is currently

unknown and is thus ignored in our estimates.

As suggested in Section V-D, program size is a major

practical limitation of conjunction obfuscator. For a 64-bit

conjunction program, the experimental program size reached

750 GB. However, the program size for a 32-bit program is

small enough to be loaded into the RAM of a commodity

desktop computer.

The experimental results in Tables III and IV also demon-

strate that the key generation time is small, on the order of

one second.

The obfuscation takes 6.7 hours to achieve 73-bit security

for the 64-bit conjunction program, and is the main compu-

tational bottleneck of conjunction obfuscator. This operation

is run offline and once per program. Thus obfuscation time is

does not impact many practical settings.

Evaluation takes 32 ms to acheive 53 bits of security for a

32-bit pattern and 2.5 seconds to attain 73-bit security for a 64-

bit conjunction pattern. The evaluation time is the main online

operation and is expected to be run frequently. The 32-bit

pattern results imply that runtime is practical. Our evaluation

runtime for a 64-bit conjunction obfuscator is smaller by more

than two orders of magnitude than the time (949 sec.) reported

for a 64-bit read-once branching program obfuscated using

GGH15 in [27].

D. Experiments for the Word Size of One Bit

To explore the effect of multilinearity degree on the runtime

metrics of conjunction obfuscator, we performed a series of

experiments at w = 1 (Table V). The multinearity degree of

directed encoding corresponds to L+ 1 as we have one more

level of encoding at the end, which is specific to the test for

conjunction obfuscator.

Table V shows that our implementation is able to achieve

the multilinearity degree of 25 (in contrast to 20 in [27] for

365

TABLE V: Runtimes and program size for conjunction pro-

grams at w=1, t = 220, and λ > 80

L n k Σexp (Πv) KeyGen Obfuscate Evaluate
(GB) (s) (min) (s)

5 8192 240 1.08 1.1 1.1 0.39
6 8192 300 2.36 1.7 1.8 0.72
8 16384 420 13.2 7.6 8.2 3.7
10 16384 480 28.6 11 12 5.5
12 16384 600 60.4 18 22 12
14 32768 720 227 62 103 74
16 32768 780 363 81 135 101
18 32768 900 565 115 198 158
19 32768 960 723 134 237 188
20 32768 960 825 148 252 213
21 32768 1020 994 172 310 230
22 32768 1080 1232 199 350 247
23 32768 1140 1459 212 404 286
24 32768 1200 1774 257 510 379

a comparable computing environment). For the degree of 20,

our obfuscation time is 237 minutes (vs 4,060 minutes in [27])

and our evaluation is 188 seconds (vs 1,514 seconds in [27]).

Our main experimental limitation was memory in the server

computing environment. Results in Table V show that our

implementation would be able to support at most 24-bit

conjunction programs if the word encoding optimization were

not applied. Also, the runtimes for this 24-bit scenario are

substantially higher than our results for 32-bit conjunction

programs in Table III.

E. Parallelization experiments

Table VI shows the runtime results for a 32-bit pattern with

53 bits of security on a 4-core desktop commodity CPU as a

function of the number of threads. The total program size and

all input parameters are the same as in the first row of Table III.

As expected, runtimes for 4 and 8 threads are approximately

the same. There is no major benefit of hyper-threading, as the

number of physical cores is 4.

When increasing the number of threads from 1 to 4, the

key generation time decreases by a factor of 3.2, suggesting

that key generation benefits from loop parallelization. The

obfuscation procedure scales well with more threads. Runtime

improvement is a factor of 3.2 (and even 3.5 when 8 threads

are considered). This implies that further obfuscation runtime

improvements can be achieved using more CPU cores. The

evaluation procedure also benefits from loop parallelization.

The runtime improvement in this case is 3.4 (3.7 for 8 threads).

The evaluation runtime of 43 ms on a commodity desktop

environment implies that a 32-bit conjunction obfuscator is

already practical.

We also ran the evaluation of an obfuscated 64-bit con-

junction program (with 73 bits of security) on the commodity

desktop computer for the scenario where the obfuscation

is previously performed in a high-performance computing

environment (corresponds to the last row in Table IV). This fits

the scenario where the obfuscated program would be stored

on SSD drives (or other fast access media.) The average time

of evaluation was 3.5 sec.

TABLE VI: Runtimes for 32-bit conjunction patterns at n =
1024 as a function of number of threads in a 4-core commodity

desktop computing environment

threads KeyGen Obfuscate Evaluate
(s) (min) (ms)

1 0.179 24.3 161
2 0.106 13.8 90
4 0.056 7.7 48
8 0.053 7.0 43

IX. CONCLUDING REMARKS

Our work presents an improved design and software imple-

mentation for the secure obfuscation of conjunction programs,

which are significantly more complex than simple point obfus-

cation functions supported by prior obfuscation implementa-

tions. The obfuscation construction we implement is based on

a reasonable hardness variant of a standard lattice assumption

(entropic Ring-LWE) and distributional VBB, in constrast

to previous implementations of non-trivial obfuscators based

on IO via multilinear maps [25], [26], [27] or the heuristic

techniques not derived from the computational hardness of

mathematical problems [2], [3], [4], [5], [6], [7].

Through our optimizations, we are able to reduce the

program size, obfuscation runtime, and evaluation runtime by

multiple orders of magnitude. This allows us to execute the

obfuscation and evaluation of 32-bit conjunction programs in

a commodity desktop environment. Our implementation can

also run secure obfuscation of 64-bit conjunction programs

in a commercially available server computing environment

and execute evaluation in a commodity desktop environment,

achieving the evaluation runtime of 3.5 seconds.

A major challenge not addressed by this work is the encod-

ing of real practical programs as conjunctions chosen from a

distribution having sufficient entropy. A potential approach to

this problem is to use the obfuscation technique for compute-

and-compare programs, a recently proposed generalization of

conjunction obfuscators, based on LWE [50]. Note that many

design elements and optimizations presented in this study can

also be applied to this more general obfuscation technique.

X. ACKNOWLEDGEMENTS

We gratefully acknowledge the input and feedback from

Sean Al-Gattas, David Archer, Lisa Bahler, Brian Coan,

Nicholas Genise, Shafi Goldwasser, Michael Hsieh, Daniele

Micciancio, Michael Naehrig, Rafail Ostrovsky, David Re-

nardy, Carey Schwartz, Nigel Smart, Vinod Vaikuntanathan,

and Michael Walter. We also thank the S&P’18 reviewers for

helpful comments.

This work was sponsored by the Defense Advanced Re-

search Projects Agency (DARPA) and the Army Research

Laboratory (ARL) under Contract Numbers W911NF-15-C-

0226 and W911NF-15-C-0233. The views expressed are those

of the authors and do not necessarily reflect the official

policy or position of the Department of Defense or the U.S.

Government.

366

REFERENCES

[1] Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs, “Obfuscating
conjunctions under entropic ring lwe,” in Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, ser. ITCS
’16, 2016, pp. 147–156.

[2] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4,
no. 3, pp. 21–23, Apr. 1998.

[3] G. Wroblewski, “General method of program code obfuscation,” Ph.D.
dissertation, Citeseer, 2002.

[4] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, ser. CCS ’03,
2003, pp. 290–299.

[5] S. Schrittwieser, S. Katzenbeisser, P. Kieseberg, M. Huber, M. Leithner,
M. Mulazzani, and E. Weippl, “Covert computation: Hiding code in
code for obfuscation purposes,” in Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security,
ser. ASIA CCS ’13, 2013, pp. 529–534.

[6] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation.” in NDSS, 2008.

[7] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding in
software with mixed boolean-arithmetic transforms,” in Proceedings of
the 8th International Conference on Information Security Applications,
ser. WISA’07, 2007, pp. 61–75.

[8] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proffing, and
obfuscation: Tools for software protection,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735–746, Aug. 2002.

[9] N. Eyrolles, L. Goubin, and M. Videau, “Defeating mba-based ob-
fuscation,” in Proceedings of the 2016 ACM Workshop on Software
PROtection, ser. SPRO ’16, 2016, pp. 27–38.

[10] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly
of obfuscated binaries,” in USENIX Security Symposium, 2004.

[11] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer
of vicious executables (save),” in 20th Annual Computer Security
Applications Conference, Dec 2004, pp. 326–334.

[12] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse
engineering obfuscated code,” in 12th Working Conference on Reverse
Engineering (WCRE’05), Nov 2005, p. 10.

[13] B. Barak, “Hopes, fears, and software obfuscation,” Commun. ACM,
vol. 59, no. 3, pp. 88–96, Feb. 2016.

[14] S. Hada, Zero-Knowledge and Code Obfuscation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 443–457.

[15] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” J. ACM,
vol. 59, no. 2, pp. 6:1–6:48, May 2012.

[16] N. Bitansky, R. Canetti, H. Cohn, S. Goldwasser, Y. T. Kalai, O. Paneth,
and A. Rosen, The Impossibility of Obfuscation with Auxiliary Input or
a Universal Simulator. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 71–89.

[17] S. Goldwasser and Y. T. Kalai, “On the impossibility of obfuscation
with auxiliary input,” in 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), Oct 2005, pp. 553–562.

[18] B. Applebaum and Z. Brakerski, Obfuscating Circuits via Composite-
Order Graded Encoding. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2015, pp. 528–556.

[19] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai, Protecting
Obfuscation against Algebraic Attacks. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 221–238.

[20] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” SIAM Journal on Computing, vol. 45, no. 3, pp. 882–
929, 2016.

[21] C. Gentry, S. Gorbunov, and S. Halevi, Graph-Induced Multilinear Maps
from Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 498–527.

[22] H. Lin, Indistinguishability Obfuscation from SXDH on 5-Linear Maps
and Locality-5 PRGs. Cham: Springer International Publishing, 2017,
pp. 599–629.

[23] H. Lin, R. Pass, K. Seth, and S. Telang, Indistinguishability Obfusca-
tion with Non-trivial Efficiency. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 447–462.

[24] H. Lin and S. Tessaro, Indistinguishability Obfuscation from Trilinear
Maps and Block-Wise Local PRGs. Cham: Springer International
Publishing, 2017, pp. 630–660.

[25] D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff, “Implementing
cryptographic program obfuscation,” Cryptology ePrint Archive, Report
2014/779, 2014, http://eprint.iacr.org/2014/779.

[26] K. Lewi, A. J. Malozemoff, D. Apon, B. Carmer, A. Foltzer, D. Wagner,
D. W. Archer, D. Boneh, J. Katz, and M. Raykova, “5gen: A framework
for prototyping applications using multilinear maps and matrix branch-
ing programs,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16, 2016, pp.
981–992.

[27] S. Halevi, T. Halevi, V. Shoup, and N. Stephens-Davidowitz, “Im-
plementing bp-obfuscation using graph-induced encoding,” Cryptology
ePrint Archive, Report 2017/104 [to appear in ACM CCS 2017], 2017,
http://eprint.iacr.org/2017/104.

[28] J.-S. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles,
M. Raykova, A. Sahai, and M. Tibouchi, Zeroizing Without Low-Level
Zeroes: New MMAP Attacks and their Limitations. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 247–266.

[29] J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi, Cryptanalysis
of GGH15 Multilinear Maps. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 607–628.

[30] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé, Cryptanalysis of
the Multilinear Map over the Integers. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 3–12.

[31] J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu, Crypt-
analysis of the New CLT Multilinear Map over the Integers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 509–536.

[32] Y. Hu and H. Jia, Cryptanalysis of GGH Map. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 537–565.

[33] E. Miles, A. Sahai, and M. Zhandry, Annihilation Attacks for Multilinear
Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 629–658.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-53008-5 22

[34] J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi, Zeroizing Attacks
on Indistinguishability Obfuscation over CLT13. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 41–58.

[35] Y. Chen, C. Gentry, and S. Halevi, Cryptanalyses of Candidate
Branching Program Obfuscators. Cham: Springer International
Publishing, 2017, pp. 278–307. [Online]. Available: https://doi.org/10.
1007/978-3-319-56617-7 10

[36] D. Apon, N. Döttling, S. Garg, and P. Mukherjee, “Cryptanalysis of
Indistinguishability Obfuscations of Circuits over GGH13,” in 44th
International Colloquium on Automata, Languages, and Programming
(ICALP 2017), vol. 80, 2017, pp. 38:1–38:16.

[37] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and
M. Zhandry, Secure Obfuscation in a Weak Multilinear Map Model.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 241–268.
[Online]. Available: https://doi.org/10.1007/978-3-662-53644-5 10

[38] M. Bellare and I. Stepanovs, Point-Function Obfuscation: A Framework
and Generic Constructions. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 565–594. [Online]. Available: http://dx.doi.org/
10.1007/978-3-662-49099-0 21

[39] S. Goldwasser and G. N. Rothblum, On Best-Possible Obfuscation.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 194–213.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-70936-7 11

[40] B. Lynn, M. Prabhakaran, and A. Sahai, Positive Results and
Techniques for Obfuscation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 20–39. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-24676-3 2

[41] G. D. Crescenzo, L. Bahler, B. A. Coan, Y. Polyakov, K. Rohloff,
and D. B. Cousins, “Practical implementations of program obfuscators
for point functions,” in International Conference on High Performance
Computing & Simulation, HPCS 2016, Innsbruck, Austria, July
18-22, 2016. IEEE, 2016, pp. 460–467. [Online]. Available:
http://dx.doi.org/10.1109/HPCSim.2016.7568371

[42] L. Bahler, G. Di Crescenzo, Y. Polyakov, K. Rohloff, and
D. B. Cousins, “Practical implementation of lattice-based program
obfuscators for point functions,” in 2017 International Conference
on High Performance Computing & Simulation, HPCS 2017, Genoa,
Italy, July 17-21, 2017, 2017, pp. 761–768. [Online]. Available:
https://doi.org/10.1109/HPCS.2017.115

367

[43] Z. Brakerski and G. N. Rothblum, “Obfuscating conjunctions,” Journal
of Cryptology, vol. 30, no. 1, pp. 289–320, 2017.

[44] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler,
tighter, faster, smaller,” in Advances in Cryptology–EUROCRYPT 2012.
Springer, 2012, pp. 700–718.

[45] C. F. F. Karney, “Sampling exactly from the normal distribution,” ACM
Trans. Math. Softw., vol. 42, no. 1, pp. 3:1–3:14, Jan. 2016. [Online].
Available: http://doi.acm.org/10.1145/2710016

[46] D. Micciancio and M. Walter, “Gaussian sampling over the integers:
Efficient, generic, constant-time,” in Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 20-24, 2017, Proceedings, Part II, 2017, pp.
455–485.

[47] J.-S. Coron, T. Lepoint, and M. Tibouchi, Practical Multilinear
Maps over the Integers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 476–493. [Online]. Available: https://doi.org/10.
1007/978-3-642-40041-4 26

[48] S. Garg, C. Gentry, and S. Halevi, Candidate Multilinear
Maps from Ideal Lattices. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 1–17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38348-9 1

[49] K. Nayak, C. W. Fletcher, L. Ren, N. Chandran,
S. Lokam, E. Shi, and V. Goyal, “Hop: Hardware makes
obfuscation practical,” in 24th Annual Network and Distributed
System Security Symposium, NDSS. Internet Society, February
2017. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/hop-hardware-makes-obfuscation-practical-2/

[50] D. Wichs and G. Zirdelis, “Obfuscating compute-and-compare programs
under lwe,” Cryptology ePrint Archive, Report 2017/276, 2017, http:
//eprint.iacr.org/2017/276.

[51] R. Goyal, V. Koppula, and B. Waters, “Lockable obfuscation,” Cryptol-
ogy ePrint Archive, Report 2017/274, 2017, http://eprint.iacr.org/2017/
274.

[52] M. Kubat, An Introduction to Machine Learning, 1st ed. Springer
Publishing Company, Incorporated, 2015.

[53] Y. Xiao, K. G. Mehrotra, and C. K. Mohan, Efficient Classification
of Binary Data Stream with Concept Drifting Using Conjunction Rule
Based Boolean Classifier, 2015, pp. 457–467.

[54] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/, accessed: 2017-
11-13.

[55] A. Anand, L. Wilkinson, and D. N. Tuan, “An l-infinity norm visual
classifier,” in 2009 Ninth IEEE International Conference on Data
Mining, Dec 2009, pp. 687–692.

[56] L. Wilkinson, A. Anand, and D. N. Tuan, “Chirp: A new classifier
based on composite hypercubes on iterated random projections,” in
Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’11. New
York, NY, USA: ACM, 2011, pp. 6–14. [Online]. Available:
http://doi.acm.org/10.1145/2020408.2020418

[57] V. Lyubashevsky, C. Peikert, and O. Regev, “A toolkit for ring-LWE
cryptography,” in EUROCRYPT, vol. 7881. Springer, 2013, pp. 35–54.

[58] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
fpga implementations of lattice-based cryptography,” in Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Sym-
posium on, June 2013, pp. 81–86.

[59] C. Gentry, S. Halevi, and N. P. Smart, Homomorphic
Evaluation of the AES Circuit. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 850–867. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5 49

[60] V. Lyubashevsky, C. Peikert, and O. Regev, On Ideal Lattices and
Learning with Errors over Rings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 1–23. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-13190-5 1

[61] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor
lattices with arbitrary modulus,” Cryptology ePrint Archive, Report
2017/308, 2017, http://eprint.iacr.org/2017/308.

[62] R. El Bansarkhani and J. Buchmann, “Improvement and efficient im-
plementation of a lattice-based signature scheme,” in Selected Areas in
Cryptography–SAC 2013, T. Lange, K. Lauter, and P. Lisoněk, Eds.
Springer, 2014, pp. 48–67.

[63] L. Ducas, V. Lyubashevsky, and T. Prest, Efficient Identity-Based En-
cryption over NTRU Lattices. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 22–41.

[64] C. Peikert, “An efficient and parallel Gaussian sampler for lattices,” in
CRYPTO, 2010, pp. 80–97.

[65] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, ser. STOC
’08. New York, NY, USA: ACM, 2008, pp. 197–206.

[66] N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete gaus-
sians for lattice-based cryptography on a constrained device,” Applicable
Algebra in Engineering, Communication and Computing, vol. 25, no. 3,
pp. 159–180, Jun 2014.

[67] M. Albrecht, S. Scott, and R. Player, “On the concrete hardness of
learning with errors,” Journal of Mathematical Cryptology, vol. 9, no. 3,
p. 169203, 10 2015.

[68] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein,
K. Lauter, S. Lokam, D. Moody, T. Morrison, A. Sahai, and V. Vaikun-
tanathan, “Security of homomorphic encryption,” HomomorphicEncryp-
tion.org, Redmond WA, Tech. Rep., July 2017.

[69] J.-F. Dhem and J.-J. Quisquater, “Recent results on modular multiplica-
tions for smart cards,” in Smart Card Research and Applications, ser.
Lecture Notes in Computer Science, J.-J. Quisquater and B. Schneier,
Eds. Springer Berlin Heidelberg, 2000, vol. 1820, pp. 336–352.

APPENDIX A

PSEUDOCODE FOR TRAPDOOR SAMPLING ALGORITHMS

Algorithm 3 G-sampling [61]

function SAMPLEG(σt, u,q) � q = [q]
κ
t is the vector of

base-t digits in modulus q
σ := σt/ (t+ 1)
l0 :=

√
t (1 + 1/κ) + 1

h0 := 0
d0 := q0/t
for i = 1..κ− 1 do

li :=
√

t (1 + 1/(κ− i)) � li, hi are entries in

sparse triangular matrix L
hi :=

√
t (1− 1/ {κ− (i− 1)})

di := (di−1 + qi) /t � di are entries in the last

column of matrix D
end for
Define Z ∈ Zκ×n � this vector will store the result

of G-sampling

for i = 0..n− 1 do � Iterate through all coefficients of

polynomial. This loop can be parallelized.

v := u(i) � v = [v]
κ
t is the vector of digits in

coefficient u(i) ∈ Zq

p← PERTURB(σ, l,h) � p, l,h ∈ Rκ

c0 := (v0 − p0)/t
for j = 1..κ− 1 do

cj = (cj−1 + vj − pj)/t
end for
z← SAMPLED(σ, c,d) � z ∈ Zκ; c,d ∈ Rκ

t0 := t · z0 + q0 · zκ−1 + v0
for j = 1..κ− 2 do

tj := t · zj − zj−1 + qj · zκ−1 + vj
end for
tκ−1 := qκ−1 · zκ−1 − zκ−2 + vκ−1

Z(:, i) := t � t = (t0, t1, . . . , tκ−1) ∈ Zκ

end for
return Z

end function

368

The algorithms described in this section are variations of

trapdoor sampling algorithms proposed in [61]. The modifica-

tions were made to reduce the number of calls to polynomial

CRT operations, increase opportunities for parallel execution,

and ease the software implementation.

A more significant modification is in the Perturb subroutine

of Algorithm 3. Instead of using discrete Gaussian distribution,

we switched to the continuous distribution. The use of discrete

Gaussian distribution would require a higher value of σt,

proportional to t2 rather than t + 1, due to the Σ3 condition

in Corrolary 3.1 of [61]. This would significantly increase the

modulus q (for large t) determined by the correctness con-

straint (1). The use of the continuous distribution eliminates

the Σ3 condition. A more detailed discussion of this scenario

is provided after Corrolary 3.1 in [61].

function PERTURB(σ, l,h) � l,h ∈ Rκ are the entries in

matrix L
for i = 0..κ− 1 do

zi ← SAMPLER(σ, 0) � SAMPLER is continuous

Gaussian sampler

end for
for i = 0..κ− 2 do

pi = li · zi + hi+1 · zi+1

end for
pκ−1 = hκ−1 · zκ−1

return p � p = (p0, p1, . . . , pκ−1) ∈ Rκ

end function

function SAMPLED(σ, c,d) � Sample from the lattice

generated by matrix D
zκ−1 ← SAMPLEZ(σ/dκ−1,−cκ−1/dκ−1)
c := c− zκ−1d
for i = 0..κ− 2 do

zi ← SAMPLEZ(σ,−ci)
end for
return z � z = (z0, z1, . . . , zκ−1) ∈ Zκ

end function

APPENDIX B

DERIVATION OF CORRECTNESS CONSTRAINT FOR

CONJUNCTION OBFUSCATOR

Consider initially the case of a 2-word conjunction obfus-

cation pattern, where we use R1, R2, and R3 to denote the

encoding matrices and A0, A1, A2, and A3 to denote the

public keys. The Encode operation for the first level can then

be expressed as

A0R1 = r1A1 + e1 ∈ R1×m
q ,

where r1 is a product of two uniform ring elements sampled

over {−1, 0, 1}n,A0 ∈ R1×m
q , and R1 ∈ Rm×m

q .

Algorithm 4 Perturbation generation [61]

function SAMPLEPZ(n, q, s, σt, (r̂, ê))

z :=
(
σ−2
t − s−2

)−1

a := s2 − z
∑κ

i=1 r̂
T
i r̂i � a ∈ K2n

b := −z∑κ
i=1 r̂

T
i êi � b ∈ K2n

d := s2 − z
∑κ

i=1 ê
T
i êi � d ∈ K2n

for i = 0..nκ− 1 do
qi ← SAMPLEZ(

√
s2 − σ2

t)
end for
convert q ∈ Zκ×n to q̂ ∈ Rκ

q � CRT operations

can be executed in parallel

c := − σ2
t

s2−σ2
t

[
r̂

ê

]
q̂ � c ∈ K2

2n

p← SAMPLE2Z (a, b, d, c) � p ∈ Z2×n

convert p ∈ Z2×n to p̂ ∈ R2
q

return (p̂, q̂)

end function

function SAMPLE2Z(a, b, d, c)

let c = (c0, c1)
q1 ← SAMPLEFZ(d, c1) � q1 ∈ Zn

convert q1 ∈ Zn to q̂1 ∈ K2n

c0 := c0 + bd−1 (q̂1 − c1)
q0 ← SAMPLEFZ(a− bd−1bT , c0) � q0 ∈ Zn

return (q0, q1)

end function

The expression corresponding to the minuend in Evaluate,

i.e., A0SΠR3, can be written as follows:

A0R1R2R3 = (r1A1 + e1)R2R3 =

(r1 (r2A2 + e2) + e1R2)R3 =

(r1 (r2 (r3A3 + e3) + e2R3) + e1R2R3) .

Switching to infinity norms, we get the following expression

for the noise norm:

‖A0R1R2R3 − r1r2r3A3‖∞ =

‖e1R2R3 + r1e2R3 + r1r2e3‖∞ .

For the subtrahend in Evaluate, i.e., A0RΠS3, we can use

the same estimate as an upper bound for the noise. The term

function SAMPLEFZ(f, c)

if dim(f) = 1 then return SAMPLEZ
(√

f, c
)

else
let f(x) = f0(x

2) + x · f1(x2) � Extract even

and odd componets of f(x)
c′ := Pstride(c) � Pstride permutes coefficients

(a0, a1, . . . , an−1) to (a0, a2, . . . , an−2, a1, a3, . . . , an−1)
(q0, q1)← SAMPLE2Z (f0, f1, f0, c

′)
let q(x) = q0(x

2) + x · q1(x2)
return q

end if
end function

369

r1r2r3A3 is present in both terms in Evaluate by the defini-

tion of conjunction obfuscator (r1r2r3A3 gets eliminated by

the subtraction in Evaluate). The actual norm of noise terms

will be significantly smaller in this case because Gaussian

polynomials are sampled using the distribution parameter σ
rather than a much larger σ′.

Hence, the norm for a 2-word obfuscated conjunction pat-

tern can be bounded as

Δ̃ < 2 ‖e1R2R3 + r1e2R3 + r1r2e3‖∞ .

The encoding matrix Ri contains m rows with infinity

norm BR = βs (for the initial encoding matrix before any

multiplications of encodings), where β = 2.0 (was found

empirically).

As ‖Ri‖∞ � ri, we have

Δ̃ < 4 ‖e1R2R3‖∞ . (3)

Parameter Be is introduced as an upper bound for the

values generated using discrete Gaussian distribution and can

be taken as σ′√γ, where assurance measure γ can be found

empirically (usually between 36 and 144; we set γ := 36 in

our experiments).

If we consider a product of R2 and R3, we obtain

‖R×‖∞ = ‖R2R3‖∞ ≤ nmB2
R.

Now consider the product of e1 and R×:

‖e1R×‖∞ ≤ nmBe ‖R×‖∞ ≤ (nm)
2
BeB

2
R.

As e1, R1, and R2 are generated using zero-centered

Gaussian sampling and the number of samples involved in

each polynomial multiplication is relatively large, we can

apply the Central Limit Theorem to replace every instance

of nm with
√
nm, which yields

‖e1R×‖∞ ≤ nmBeB
2
R. (4)

Applying the EqualTest condition (Δ < q/8) and substi-

tuting (4) into (3), we obtain a correctness constraint for a

2-word conjunction obfuscator:

q > 32
√
mnBe

√
mnB2

R = 32Be

(√
mnBR

)2
.

Using the 2-word conjunction correctness constraint as the

base case, we can derive by induction the following expression

for an L-word conjunction:

q > 32Be

(√
mnBR

)L
(5)

for L ≥ 2.

APPENDIX C

COMPARISON OF INTEGER GAUSSIAN SAMPLERS

Table VII shows the comparison of sampling rates for

generic integer Gaussian samplers in the desktop computing

environment for the case of single-threaded execution. The

distribution parameter σ was varied from 217 to 227 to cover

the range of distribution parameters used by the subroutines

of the G-sampling and perturbation generation procedures

TABLE VII: Sampliing rates in 106 per second for generic

integer Gaussian samplers

σ Rejection sampling [65] Karney [45] Constant-time [46]

217 0.929 3.810 1.587
222 0.932 3.811 1.502
227 0.900 3.798 1.507

in trapdoor sampling for the conjunction obfuscator. These

results were used to select the generic sampler for our main

obfuscation experiments. The rejection sampling method [65]

is included only for reference. Up to 20 MB of memory was

allowed for the generic constant-time sampler [46]. The other

two methods do not have any significant memory require-

ments.

Table VII suggests that Karney’s method [45] has the

highest sampling rate for the distribution parameter range of

interest and was thus chosen for our main obfuscation experi-

ments. The sampling rates shown in Table VII are within 20%

of the corresponding rates reported in [46], which suggests

that our conclusions are not specific to our implementation

but reflect the computational complexity at the algorithmtic

level.

It should be noted that both constant-time sampler [46]

and Karney’s method [45] can be separated into offline and

online subroutines. The analysis presented in [46] suggests

that the constant-time sampler [46] may be faster in this

case. Since the generic integer sampling method is used only

in the obfuscation procedure, which is executed offline, this

additional complexity is not needed for our application.

Despite a higher runtime, a constant-time sampler, such as

[46], could be preferred in practice over a rejection sampler,

like [45], because it reduces the opportunities for timing

attacks.

APPENDIX D

PSEUDOCODE FOR CONJUNCTION OBFUSCATION

ALGORITHMS

When the ring instantiation of directed encoding (described

in section III-B) is applied to the conjunction obfuscator, the

encodings Ri,b,Si,b,RL+1,SL+1 get represented as matrices

of m×m ring elements over Rq .

The key generation algorithm for the ring instantiation of

conjunction obfuscator is listed in Algorithm 5. Parameter L
is the effective length of conjunction pattern.

Algorithm 5 Key generation

function KEYGEN(1λ)

for i = 0..L+1 do
Ai, T̃i := TRAPGEN(1λ)

end for
return KL+1 :=

(
{Ai, T̃i}i∈{0,..,L+1}

)
end function

The conjunction obfuscator relies on the Encode algorithm

of directed-encoding ring instantiation (defined in Section

370

III-B) to encode each part of the conjunction pattern. The

Encode algorithm is depicted in Algorithm 6.

Algorithm 6 Directed encoding

function EncodeAi→Ai+1 (Ti, r, σ)

ei+1 ← DR,σ ∈ Rq
1×m.

bi+1 := rAi+1 + ei+1 ∈ R1×m
q

Ri+1 := GaussSamp(Ai,Ti,bi+1, σt, s) ∈ Rm×m
q

return Ri+1

end function

Algorithm 7 lists the pseudocode for the main obfuscation

function. In contrast to the obfuscated program defined in

Section III-A, we encode words of conjunction pattern v ∈
{0, 1, �}L. Each word is w bits long, and 2w is the number of

encoding matrices for each encoded word of the pattern. The

actual pattern length L gets replaced with the effective length

L = �L/w	 to reduce the number of encoding levels (multl-

inearity degree). The word encoding is a major optimization

proposed in this work, and is discussed in detail in Section

III-C.

The si,b, ri,b elements are ternary uniformly random ring

elements, i.e., sampled over {−1, 0, 1}n, for i ∈ [L] and b ∈
{0, . . . , 2w − 1}. We set si,b = · · · = si,j for indices b, · · · , j
corresponding to the same wildcard subpattern. To implement

these wildcard subpatterns, we rely on binary masks, where

the subpattern with all zeros in the wildcard characters is used

to generate a uniformly random ring element, which is then

reused for all subpatterns with non-zero bits in the wildcard

characters.

The obfuscated program then transforms to

Πv :=
(
A0, {Si,b,Ri,b}i∈[L],b∈{0,...,2w−1} ,RL+1,SL+1

)
.

Algorithm 7 operates with two variants of Encode dis-

tinguished by the distribution parameter used. To encode

ring elements ri,b and s×, we sample using σ. To encode

ring elements si,b · ri,b and rL+1, we use σ′ = k
√
nσ.

We need to use a larger value of distribution parameter in

order to apply the Ring-LWE assumption to “secret” ring

elements si,b · ri,b in the security proof for the ring variant

of directed encoding specific to conjunction obfuscator, which

is presented in section 4.3 of [1].

Note that the security proof presented in Section 4.3 of [1]

has typos in expression (1) and Hybrid 1 distribution. The

vectors e′0 and e′1 should be sampled from DRm,σ′ rather than

DRm,σ (here, we use the notation of [1]). This typo does not

affect the rest of Hybrid distributions and the correctness of

the proof itself.

The use of ternary distribution T implies that we rely on a

small-secret variant of the Ring-LWE assumption to minimize

the noise growth.

The pseudocode for the optimized evaluation procedure

is presented in Algorithm 8 (optimization is described in

VI-A). Just like in the abstract algorithm described in section

III-A, if both SΠ and RΠ are the encodings of the same

Algorithm 7 Obfuscation

function OBFUSCATE(v ∈ {0, 1, ∗}L,KL+1, σ, σ
′)

{ri,b}i∈[L],b∈{0,...,2w−1} ← T
for i = 1..L do

Build binary wildcard mask M�

for b = 0..2w-1 do
if (b ∧M) = 0 then

si,b ← T
else

j := b ∧ ¬M
si,b := si,j

end if
end for

end for
for i = 1..L do

for b = 0..2w-1 do
Si,b := EncodeAi−1→Ai(T̃i−1, si,b · ri,b, σ′)
Ri,b := EncodeAi−1→Ai

(T̃i−1, ri,b, σ)
end for

end for
rL+1 ← T ∈ R
s× := rL+1

∏L
i=1 si,v[1+(i−1)w : iw]

SL+1 := EncodeAL→AL+1
(T̃L, s×, σ)

RL+1 := EncodeAL→AL+1
(T̃L, rL+1, σ

′)
Πv :=

(
A0, {Si,b,Ri,b}i∈[L],b∈{0,...,2w−1} ,RL+1,SL+1

)
return Πv

end function

Algorithm 8 Optimized Evaluation

function EVALUATE(x ∈ {0, 1}L, Πv)

SΠ := A0 ∈ Rq
1×m

RΠ := A0 ∈ Rq
1×m

for i = 1..L do
SΠ := SΠSi,x[1+(i−1)w : iw] ∈ Rq

1×m

RΠ := RΠRi,x[1+(i−1)w : iw] ∈ Rq
1×m

end for
Δ := ‖SΠRL+1 −RΠSL+1‖∞

return Δ ≤ q/8
end function

value, the result of Fv is 1. Otherwise, the result is 0.

The infinity norm computation finds a coefficient with the

maximum absolute value in the row vector of ring elements

A0 (SΠRL+1 −RΠSL+1) ∈ Rq
1×m. The inequality Δ ≤

q/8 comes directly from EqualTest in the ring instantiation

of directed encoding (Section III-B).

371

