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We report on our implementation of a new Gaussian sampling algorithm for lattice trapdoors. Lattice trapdoors are used

in a wide array of lattice-based cryptographic schemes including digital signatures, attributed-based encryption, program

obfuscation and others. Our implementation provides Gaussian sampling for trapdoor lattices with prime moduli, and supports

both single- and multi-threaded execution. We experimentally evaluate our implementation through its use in the GPV

hash-and-sign digital signature scheme as a benchmark. We compare our design and implementation with prior work reported

in the literature. The evaluation shows that our implementation 1) has smaller space requirements and faster runtime, 2) does

not require multi-precision floating-point arithmetic, and 3) can be used for a broader range of cryptographic primitives than

previous implementations.
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1 INTRODUCTION
Lattice-based cryptography is an increasingly common and important family of cryptostystems [21, 23, 25].

A motivation for the use of lattice-based cryptography is that lattice-based schemes are generally believed to

be “post-quantum”, meaning that they are resistant to quantum computing attacks [17, 19, 24]. Besides their

security properties, lattice-based cryptographic schemes also have very attractive functional properties, such as

the ability to support homomorphic encryption [3, 10, 14], attribute-based encryption [2], cryptographic software

obfuscation [4], among many others. As such, lattice-based cryptography has become a subject of much interest

for efficient implementation and application [7, 9, 15].

Lattice-based cryptographic protocols have been described as falling into two classes [18].

The first class utilizes direct application of hard mathematical problems, such as Learning With Errors (LWE)

or the more efficient ring Learning With Errors (ring-LWE) variation. This first class of protocols involves the

sampling of random polynomials and evaluation of linear functions to construct collision-resistant hash functions

and public-key encryption schemes [3, 10, 14].

The second class provides a wider array of advanced lattice-based cryptographic schemes, such as “hash-and-

sign" digital signatures [13], identity-based encryption [13], attribute-based encryption [2], and conjunction

obfuscation [4]. This second class of schemes relies on a concept of a strong lattice trapdoor, which requires

sampling from an n-dimensional lattice L with a Gaussian-like distribution [13]. This lattice trapdoor sampling

operation is space- and compute-intensive and is often the primary computational bottleneck for implementations

of this second class of schemes [9, 11, 13, 18].
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There have been recent theoretical approaches to design algorithms for efficient Gaussian sampling [11], but

there have been few attempts to implement and experimentally evaluate Gaussian sampling methods for lattice

trapdoors.

Our ContributionWe implement in software a variation of trapdoor sampling based on approaches in [11]

for the case of power-of-two cyclotomic rings with a prime modulus. We evaluate the scalability and runtime

performance of our implementation using the GPV hash-and-sign digital signature primitive developed in [13].

Our trapdoor sampling implementation has the following advantages over prior efforts:

• The trapdoor generation runtime is three orders of magnitude faster than prior results [9]. Our preimage

sampling is faster and has two orders of magnitude smaller storage requirements.

• Our trapdoor implementation is based on cyclotomic rings with a prime modulus (rather than a power-

of-two modulus as in prior work.) This implementation can be used for a broader range of cryptographic

primitives [2, 4].

• Our trapdoor implementation does not rely on multiprecision floating-point arithmetic and does not depend

on any external libraries, such as GMP
1
or MPFR

2
. All floating-point computations are performed using

double-precision arithmetic.

• Our implementation supports multi-threaded execution on commodity computing hardware. We experi-

mentally evaluate multi-threaded performance of our implemented trapdoor sampling capabilities on a

commercial-off-the-shelf multi-core desktop computer.

• We are adding our implementation as a trapdoor module to an open-source lattice-based cryptography

library, making it available for practical use for applications such as digital signatures, identity-based

encryption, and attribute-based encryption systems.

Table 1. Comparison of our implementation for single- and multi-threaded runtimes to the results reported in [9]

Implementation n k
Runtime [ms]

Pert. matrix [kB]

Key generation Signing Verification

Single-threaded for q = 2
k
from [9] 512 24 4,562 27 3 4,100

Single-threaded for prime q 512 24 9.5 27 0.33 0

Multi-threaded with loop parallel 512 24 6.5 21 0.35 0

Multi-threaded with batch parallel 512 24 6.9 8.9 0.066 0

Single-thread for q = 2
k
from [9] 1024 27 28,074 74 10 16,392

Single-threaded for prime q 1024 27 17.2 62.5 0.68 0

Multi-threaded with loop parallel 1024 27 7.8 45.6 0.72 0

Multi-threaded with batch parallel 1024 27 7.8 19.8 0.15 0

2 RELATED WORK
An early concept of strong lattice trapdoor based on Gaussian-sampling-like approaches is explored in [13].

This seminal work provides a trapdoor construction which is arguably complex and not suitable for practical

implementation.

Micciancio and Peikert [18] propose a more efficient trapdoor which uses samples around a target point t
in lattice L is performed via an intermediate “primitive’" lattice Gn

. The lattice L is first mapped to Gn
, then a

1
https://gmplib.org/

2
http://www.mpfr.org/
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Gaussian sample is generated in Gn
. The sample is then mapped back to L. The linear function T mapping Gn

to

L is used as the trapdoor. The main challenge of this approach is that the mapping T produces a lattice point in L
with an ellipsoidal Gaussian distribution and covariance dependent on the transformationT . To generate spherical
samples, the authors apply a perturbation technique that adds noise with complimentary covariance to the

target point t prior to using it as the center for Gn
sampling. From an implementation perspective, this approach

decomposes the lattice trapdoor sampling into two phases: 1) a perturbation sampling stage, where target-

independent perturbation vectors with a covariance matrix defined by the trapdoor mapping T are generated,

and 2) a target-dependent stage where Gaussian samples are generated from lattice Gn
. The authors suggest that

the first phase, usually referred to as perturbation generation [11], can be performed offline as it does not depend

on the target point t. The second stage, referred to as G-sampling [11], is performed online as it depends on the

target point.

Micciancio and Peikert [18] also provide an efficient algorithm for G-sampling for the case when the modulus q
is a power of two. This approach runs inO (logq) for lattices over the cyclotomic ring with dimension n. (The full
complexity isO (n logq) but the n factor can be dropped because all n integers can be sampled independently, i.e.,

in parallel.) At the same time for this approach, the G-sampling algorithm for an arbitrary modulus, such as for a

prime modulus, has the computational complexity of O
(
log

3 q
)
(or O

(
log

2 q
)
for the on-line stage when using

pre-computation and additional large storage.) Their G-sampling algorithm for perturbation generation requires

a pre-computation complexity ofO
(
n3

log
3 q

)
and storage ofO

(
n2

log
2 q

)
for the Cholesky decomposition matrix

composed of multi-precision floating-points numbers. The time complexity of the main perturbation sampling

computations in this case is O
(
n2

log
2 q

)
. The Cholesky decomposition matrix is the key time/space bottleneck

of the lattice trapdoor sampling developed in [18]. We utilize a sampling approach which does not compute and

store the Cholesky decomposition of the perturbation matrix and is hence much more time and space efficient.

Ducas and Nguyen [8] develop a more efficient perturbation generation algorithm for the power-of-two

cyclotomic rings. This prior work uses a combination of lazy floating-point techniques and special square-root

numerical algorithms (different from the Cholesky decomposition) that improves the expected running time of

computations from quadratic to quasilinear. However, this method requires substantial pre-computation effort

and significant storage (up to O(n2) bits) to store the result of the precomputation. Perturbation generation

optimization techniques are presented in Section 6 of [8] at a high level, but the authors do not provide adequate

detail to implement this perturbation method in software.

Bansarkhani and Buchmann [9] implement both matrix and ring versions of the trapdoor construction of [18]

for the case when the modulus is a power of two. The trapdoor construction was used as part of the hash-and-sign

digital signature primitive originally proposed in [13]. The authors also optimized the perturbation generation

algorithm to work with a Cholesky decomposition matrix of size 2n × 2n rather than (k + 2)n × (k + 2)n, where
k = log

2
q (the latter was used in [18]). The ring construction had a better computational and spatial efficiency

compared to the matrix version. To the best of our knowledge, the ring implementation presented in [9] is the

most efficient lattice trapdoor implementation available in literature and will be used as a benchmark to evaluate

our implementation. We discuss designs and implementations of approaches which are more efficient than the

results shown in [9], and do not rely on moduli which are a power of two.

Our designs and implementation build from the algorithms presented in [11]. This recent work substantially

improves upon prior algorithms for both G-sampling and perturbation sampling. The G-sampling algorithm

in [11] supports an abitrary modulus and has the same complexity, i.e., O (logq), as the algorithm developed

in [18] for the case when q is a power of two. This allows one to apply the trapdoor construction to more

advanced cryprographic primitives based on prime moduli, for example, the entropic ring-LWE conjunction

obfuscator introduced in [4]. The perturbation generation algorithm from [11] for power-of-two cyclotomic rings

(generalizable to arbitrary cyclotomic rings) takes full advantage of the algebraic structure of ring lattices to reduce
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the computational complexity to quasilinear, and does not require any precomputations or additional storage, in

contrast to the methods developed in [8, 9, 18]. Both algorithms from [11] are modified and implemented in this

work and discussed in more detail in Section 3.

We implement in software a variation of trapdoor sampling algorithms developed in [11] for the case of

power-of-two cyclotomic rings with a prime modulus. Our implementation of perturbation generation operation

does not require any pre-processing and additional storage to store the result of precomputations in contrast to

the Cholesky decomposition matrix that grows quadratically with ring dimension n. As a result, the trapdoor
generation time is smaller by multiple orders of magnitude and the preimage sampling time has dramatically

smaller storage requirements, as compared to the results reported in [9]. Our trapdoor implementation does not

rely on multiprecision floating-point arithmetic and does not depend on any external libraries, such as GMP or

MPFR. All floating-point computations are performed using double-precision arithmetic. In contrast to [9], our

implementation supports multi-threaded execution on commodity computing hardware.

Table 1 compares runtimes achieved using our implementation with those reported in [9]. Both implementations

used quad-core CPUs with comparable single-threaded performance (based on standard CPU benchmarks). Our

key generation and verification runtimes are at least one order of magnitude faster for the case of single-thread

execution. Our signing time is only slightly faster but our implementation supports parallelization. For the

multi-threaded execution on a 4-core CPU we were able to achieve additional runtime improvement, which

matches the number of cores in the case of batch parallelization. It should also be noted that our perturbation

sampling implementation implicitly works the perturbation matrix, thus avoiding a storage of a large matrix of

floating-point numbers, which is already 16MB for a practical digital signature setting of n = 1024.

3 LATTICE TRAPDOOR SAMPLING ALGORITHMS

3.1 Preliminaries
Our implementation utilizes cyclotomic polynomial rings R = Z[x]/⟨xn + 1⟩ and Rq = Zq[x]/⟨x

n + 1⟩, a special

class of ideal lattices, where n is a power of 2 and q is prime. The order of cyclotomic polynomial Φm(x) = xn + 1

is m = 2n. The elements in these rings can be represented in coefficient or evaluation representation. The

coefficient representation of polynomial a(x) =
∑

i<n aix
i
treats the polynomial as a list of all coefficients

a = ⟨a0,a1, . . . ,an−1⟩ ∈ (Z/qZ)
n
. The evaluation representation, often also referred to as Chinese Remainder

Transform (CRT) representation, computes the values of polynomial a(x) at all primitivem-th roots of unity

modulo q, i.e., bi = a(ζ i ) mod q for i ∈ (Z/mZ)∗. These cyclotomic rings support fast polynomial multiplication

by transforming the polynomials from coefficient representation to the evaluation one in O(n logn) time using

Fermat Theoretic Transform (FTT) and then performing component-wise multiplication.

The perturbation generation algorithm also utilizes cyclotomic fields K2n = Q[x]/⟨x
n + 1⟩, which are similar

in their properties to the cyclotomic rings except that the coefficients/values of the polynomials in this case are

rationals rather than integers. The elements of the cyclotomic fields also have coefficient and evaluation (CRT)

representation, and support fast polynomial multiplication using variants of the Fast Fourier Transform (FFT). At

the same time, the evaluation representation of such rational polynomials in our implementation works with

complex primitive roots of unity rather than the modular ones.

Lattice sampling uses n-th dimensional discrete Gaussian distributions over lattice Λ ⊂ Rn denoted as DΛ,c,σ ,

where c ∈ Rn is the center and σ is the distribution parameter. At the most primitive level, the lattice sampling

algorithms work with discrete Gaussian distribution DZ,c,σ over integers with floating-point center c and

distribution parameter σ . If the center c is omitted, it is assumed to be set to zero. In the pseudocode we present,

we use a subroutine SampleZ(σ , c) which returns a sample statistically close to DZ,c,σ . More details on our

implementation of SampleZ are provided in Section 4.2.

We useU to denote discrete uniform distribution over Zq .
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In the ring setting, preimage sampling is the procedure to generate a vector x ∈ Rm̄q of sample polynomials

such that Ax = u, where A ∈ R1×m̄
q is the public key, u ∈ Rq is the target syndrome, and dimension m̄ depends

on the specific trapdoor construction.

We use the ring-LWE trapdoor construction proposed in [9] (depicted in Algorithm 1). In the pseudocode,

k = ⌈log
2
(q)⌉ is the bitwidth of modulus q, r̂ and ê are the row vectors of secret trapdoor polynomials generated

using discrete Gaussian distribution, A is the public key, and gt = {д1,д2, . . . ,дk } is the primitive row vector

corresponding to the primitive lattice Gn
. The latter is often denoted as simply G because it is the orthogonal

sum of n copies of a low dimensional lattice G. In our implementation, gt =
{
1, 2, 22, . . . , 2k

}
. For this trapdoor

construction, m̄ = 2 + k .

Algorithm 1 Trapdoor generation using ring-LWE [9]

function TrapGen

a ←U Rq

r̂ := [r̂1, . . . , r̂k ] ← SampleZ(σ ) ∈ R1×k
q

ê := [ê1, . . . , êk ] ← SampleZ(σ ) ∈ R1×k
q

A := [1,a,д1 − (ar̂1 + ê1), . . . ,дk − (ar̂k + êk )] ∈ R
1×(2+k )
q

return (A, (r̂, ê))
end function

Algorithm 2 describes the high-level procedure for Gaussian preimage sampling. It calls perturbation generation

function SamplePZ and SampleG as subroutines. The perturbation vector p is introduced to transform ellipsoidal

Gaussian samples into spherical ones.

Algorithm 2 Gaussian preimage sampling [18]

function GaussSamp(A, (r̂, ê) ,u,σ , s)
p← SamplePZ (n,q, s, 2σ , (r̂, ê)) ▷ SamplePZ is defined in Algorithm 4

z← SampleG(σ ,u − Ap,q) ▷ SampleG is defined in Algorithm 3

convert z ∈ Zk×n to ẑ ∈ Rkq ▷ CRT operations can be executed in parallel

x := [p1 + êẑ,p2 + r̂ẑ,p3 + ẑ1, . . . ,pk+2 + ẑk ]
return x

end function

3.2 Sampling G-lattices
The G-lattice sampling problem, i.e., the problem of sampling the discrete Gaussian distribution on a lattice coset,

is formulated as

Λ⊥v
(
gt
)
=
{
z ∈ Zk : gt z = v mod q

}
,

where q ≤ bk ,v ∈ Z and g =
(
1,b,b2, . . . ,bk−1

)
. In our implementation, we use b = 2. The G-sampling problem is

formulated for a single integer v rather than n-dimensional lattice because each of the n integers can be sampled

in parallel.

We modify and implement a variation of the G-sampling algorithm developed in [11]. Algorithm 3 shows our

pseudocode variation of the G-sampling algorithm from [11] which we modify for more efficient implementation

and easier translation into software as compared to the original design. Our variation from [11] reduces the
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Algorithm 3 G-sampling [11]

function SampleG(s,u, q) ▷ q = [q]k
2
is the vector of bits in modulus q

σ := s/3

l0 :=
√

2 (1 + 1/k) + 1

h0 := 0

d0 := q0/2

for i = 1..k − 1 do
li :=

√
2 (1 + 1/(k − i)) ▷ li ,hi are entries in sparse triangular matrix L

hi :=
√

2 (1 − 1/{k − (i − 1)})

di := (di−1 + qi ) /2 ▷ di are entries in last column of D
end for
Define Z ∈ Zk×n ▷ Stores the result of G-sampling

for i = 0..n − 1 do ▷ Iterate through all coefficients of polynomial. This loop can be parallelized.

v := u(i) ▷ v = [v]k
2
is the vector of bits in coefficient u(i) ∈ Zq

p← Perturb(σ , l, h) ▷ p ∈ Zk ; l, h ∈ Rk

c0 := (v0 − p0)/2

for j = 1..k − 1 do
c j = (c j−1 +vj − pj )/2

end for
z← SampleD(σ , c, d) ▷ z ∈ Zk ; c, d ∈ Rk

t0 := 2 · z0 + q0 · zk−1 +v0

for j = 1..k − 2 do
tj := 2 · zj − zj−1 + qj · zk−1 +vj

end for
tk−1 := qk−1 · zk−1 − zk−2 +vk−1

Z(:, i) := t ▷ t = (t0, t1, . . . , tk−1) ∈ Z
k

end for
return Z

end function
function Perturb(σ , l, h) ▷ l, h ∈ Rk are the entries in matrix L

β := 0

for i = 0..k − 1 do
ci := β/li and σi := σ/li
zi ← SampleZ(σi , ci )
βi = −zihi

end for
p0 := 5z0 + 2z1

for i = 1..k − 2 do
pi := 2 (zi−1 + 2zi + zi+1)

end for
pk−1 := 2 (zk−2 + 2zk−1)

return p ▷ p = (p0,p1, . . . ,pk−1) ∈ Z
k

end function
function SampleD(σ , c, d) ▷ Sample from lattice generated by D

zk−1 ← SampleZ(σi/dk−1,−ck−1/dk−1)

c := c − zk−1d
for i = 0..k − 2 do

zi ← SampleZ(σ ,−ci )
end for
return z ▷ z = (z0, z1, . . . , zk−1) ∈ Z

k

end function
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Algorithm 4 Perturbation generation [11]

function SamplePZ (n,q, s,α , (r̂, ê) )
z :=

(
α−2 − s−2

)−1

a := s2 − z
∑k

i=1
r̂ ti r̂i ▷ a ∈ K2n

b := −z
∑k

i=1
r̂ ti êi ▷ b ∈ K2n

d := s2 − z
∑k

i=1
êti êi ▷ d ∈ K2n

for i = 0..nk − 1 do
qi ← SampleZ(

√
s2 − α2)

end for
convert q ∈ Zk×n to q̂ ∈ Rkq ▷ CRT operations can be executed in parallel

c := − −α
2

s2−α 2

[
r̂
ê

]
q̂ ▷ c ∈ K2

2n

p← Sample2Z (a,b,d, c) ▷ p ∈ Z2×n

convert p ∈ Z2×n to p̂ ∈ R2

q
return (p̂, q̂)

end function

function Sample2Z (a,b,d, c )
let c = (c0, c1)

q1 ← SampleFZ (d, c1) ▷ q1 ∈ Z
n

convert q1 ∈ Z
n to ˆq̂1 ∈ K2n

c0 := c0 + bd
−1 (q̂1 − c1)

q0 ← SampleFZ (a − bd
−1bt , c0) ▷ q0 ∈ Z

n

return (q0,q1)

end function

function SampleFZ (f , c )

if dim(f ) = 1 then return SampleZ

(√
f , c

)
else

let f (x) = f0(x
2) + x · f1(x

2) ▷ Extract even and odd componets of f (x)
c′ = Pstr ide (c) ▷ Pstr ide permutes coefficients (a0,a1, . . . ,an−1) to

▷ (a0,a2, . . . ,an−2,a1,a3, . . . ,an−1)

(q0,q1) ← Sample2Z (f0, f1, f0, c
′)

let q(x) = q0(x
2) + x · q1(x

2)

return q
end if

end function

number of calls to CRT operations and increases opportunities for parallel execution. Although our modification

does not necessarily improve the computational complexity of the algorithm, it improves runtime in single- and

multi-threaded modes of execution.

Algorithm 3 has complexityO (logq) for an arbitrary modulus. The main idea of the algorithm is not to sample

Λ⊥v
(
gt
)
directly, but to express the lattice basis Bq = TD as the image (using a transformation T) of a matrix
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D with a sparse, triangular structure. This technique requires adding a perturbation with a complementary

covariance to obtain a spherical Gaussian distribution, as in the case of the GaussSamp procedure described in

Algorithm 2. In this prior work the authors select an appropriate instantiation of D that is sparse and triangular,

and has a complementary covariance matrix with simple Cholesky decomposition Σ2 = L · Lt , where L is an

upper triangular matrix, and find the entries of the L matrix in closed form.

We show the case of b = 2 in the G-sampling procedure in Algorithm 3. Further details and derivation of the

original algorithm are in [11].

3.3 Perturbation sampling
The lattice preimage sampling algorithm developed in [18] requires the generation of n(2 + k)-dimensional

Gaussian perturbation vectors p with covariance

Σp := s2 · I − α2

[
T
I

]
·
[
Tt I

]
,

where T ∈ Z2n×nk
is a matrix with small entries serving as a lattice trapdoor, s is the upper bound on the spectral

normal of α
[
Tt , I

] t
and α is a small factor discussed in the parameter selection section below.

When working with algebraic lattices, the trapdoor T can be compactly represented by a matrix T̃ ∈ R2×k
n ,

where n denotes the rank (dimension) of the ring Rn . In our case, this corresponds to the cyclotomic ring of order

m = 2n. For the ring-LWE trapdoor construction used in our implementation (Algorithm 1), the trapdoor T̃ is

computed as (r̂, ê). The main challenge with the perturbation sampling techniques developed in [9, 18] is the

direct computation of a Cholesky decomposition of Σp that destroys the ring structure of the compact trapdoor

and operates on matrices over R.
Genise and Micciancio [11] provide an algorithm that leverages the ring structure of Rn and performs all

computations either in cyclotomic rings or fields over Φ2n(x) = xn + 1. The algorithm does not require any

preprocessing/storage and runs with time and space complexity quasi-linear in n. The perturbation sampling

algorithm can be summarized in a modular way as a combination of three steps [11]:

(1) The problem of sampling a n(2+k)-dimensional Gaussian perturbation vector with covariance Σp is reduced
to the problem of sampling a 2n-dimensional integer vector with covariance expressed by a 2 × 2 matrix

over Rn .
(2) The problem of sampling with covariance in R2×2

n is reduced to sampling two n-dimensional vectors with

covariance in Rn .
(3) The sampling problem with covariance in Rn is reduced to sampling n-dimensional perturbation with

covariance expressed by a 2 × 2 matrix over the smaller ring Rn/2 using an FFT-like approach.

The pseudocode for the perturbation generation algorithmwith implementation notes are provided inAlgorithm

4. As with Algorithm 3, we modify and implement a variation of the perturbation generation algorithm developed

in [11]. Algorithm 4 shows our pseudocode variation of the perturbation generation algorithm from [11] which

we modify for more efficient implementation and easier translation into software as compared to the original

design. Our variation from [11] reduces the number of calls to CRT operations and increases opportunities for

parallel execution. Although our modification does not necessarily improve the computational complexity of

the algorithm, it improves runtime in single- and multi-threaded modes of execution. Further details and the

complete derivation of the algorithm can be found in [11].
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4 IMPLEMENTATION

4.1 Cyclotomic rings and fields
The multiplication of elements in cyclotomic rings Rq and fields K2n is performed using the Chinese Remainder

Transform (CRT) [16].

For the case of Rq we use an implementation of Fermat Theoretic Transform (FTT) described in [1]. We

implemented FTT with Number Theretic Transform (NTT) as a subroutine. For NTT, the iterative Cooley-Tukey

algorithm with optimized butterfly operations was applied. We use native data types in our implementation

whenever possible. When large ring moduli q are needed that exceed 32-bit representations, we use a generalized

Barrett modulo reduction algorithm [6] for modulo reduction operations. This approach requires one pre-

computation per NTT run and converts modulo reduction to roughly two multiplications.

For multiplications in K2n we use the iterative Cooley-Tukey FTT algorithm over complex primitive roots of

unity.

To convert elements of rings to fields, we switch the polynomials from the evaluation representation to the

coefficient one as an intermediate step because the CRTs for rings operate with modular primitive roots of unity

and CRTs for fields deal with complex primitive roots of unity.

Element transposition for a polynomial f (x) = f0 + f1x + · · · + fn−1x
n−1

over cyclotomic polynomial xn + 1 is

expressed as f t (x) = f0 − fn−1x − · · · − f1x
n−1

. This transposition technique was used for both rings and fields. In

our implementation the transposition operation is performed directly in evaluation representation by applying

an automorphism from f (ζ2n) to f (ζ 2n−1

2n ).

4.2 Integer sampling
Both G-sampling and perturbation algorithms call the integer sampling subroutine SampleZ(σ , c) that returns a
sample statistically close to DZ,c,σ .When the center c does not change, our SampleZ implementation uses the

inversion sampling method developed in [22]. When the center c varies, the rejection sampling method proposed

in section 4.1 of [13] is applied. The inversion method is significantly faster as it is based on a table lookup while

the rejection method requires a computation of Gaussian Probability Distribution Function (PDF) for each integer

sampling call, often multiple times.

A major bottleneck of integer sampling operations in lattice-based cryptography is associated with the use

of multiprecision floating-point numbers, where the number of bits in the mantissa should roughly match the

number of security bits supported by the cryptographic protocol. A recent theoretical result in [20] suggests that

both the G-sampling and perturbation generation algorithms that are used in our implementation can support at

least 100 bits of security using double-precision floating point arithmetic. More specifically, Lemma 3.2 in [20]

states that κ/2 significant bits in a floating-point number is sufficient to maintain κ bits of security. As our goal is

to support 100 bits of security, the significand precision of 53 bits provided by double-precision floating numbers

is sufficient to achieve our security target.

We also perform the comparison of our implementation with the one described in [9] for the case when the

G-sampling procedure of [11] and the perturbation generation procedure of [9] are used for sampling the lattices

with a prime modulus. In this case we use quad-precision floating numbers in the computations related to the

Cholesky decomposition matrix, which are exposed as __float128 in GCC, and lazy floating-point techniques

from [8], which reduce most of the computations to double-precision floating-point arithmetic.
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4.3 Parameter selection
To meet the ring-LWE security requirements for the trapdoor construction, we select the values of n and q using

the inequality derived in [12], namely,

n ≥
log

2
(q/σ )

4 log
2
(δ )
. (1)

Here, σ refers to the distribution parameter used in sampling the trapdoor (r̂, ê) and δ is the root Hermite

factor, a measure of lattice security that can be mapped to the number of bits of security. The value of δ < 1.006

corresponds to at least 100 bits of security [5].

The smoothing (distribution) parameter σ can be estimated as

σ ≈
√

ln(2nm/ϵ)/π ,

where nm is the maximum ring dimension and ϵ is the bound on the statistical error introduced by each

randomized-rounding operation [18]. For nm ≤ 2
14
and ϵ ≥ 2

−80
, the value of σ ≈ 4.578.

The value of α is taken as 2σ [18].

For the spectral norm parameter s we use [9, 18]:

s > s1 (X)α ,

where X is a subgaussian random matrix with parameter s .
Lemma 2.9 of [18] states that

s1 (X) ≤ C0 · σ ·
(√

nk +
√

2n + t
)
,

where C0 is a constant and t is at most 4.7.

We can now rewrite s as

s > C · σ 2 ·

(√
nk +

√
2n + 4.7

)
,

where C = 2C0 is a constant that can be found empirically. In our experiments we used C = 1.80.

4.4 GPV signature as a benchmark
To evaluate the performance of our implementation of trapdoor sampling, we use the GPV hash-and-sign digital

signature developed in [13] and implemented for the ring-LWE constuction in [9].

The key generation for this ring variant of the GPV scheme is exactly the same as the trapdoor generation

depicted in Algorithm 1. In this case, the verification key is the public key A and the signing key is the trapdoor

(r̂, ê).
The signing operation of the GPV scheme is the Gaussian preimage sampling described in Algorithm 2. In

this case, the syndrome u = H (µ) , where µ is the message being signed and H (µ) is the hash of the message,

computed in our implementation by SHA-256 padded with random strings generated using a Pseudo-Random

Number Generation (PRNG).

The verification operation is to check whether Ax ≡ H (µ). If the equivalence relation is true, the verification is

successful.

The GPV scheme is convenient for benchmarking because it wraps around the lattice trapdoor operations, and

does not introduce any other compute- or space-intensive steps (the overhead of SHA-256 and random padding

is negligible compared to the Gaussian preimage sampling).
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4.5 Software implementation
We implemented the trapdoor algorithms and GPV digital signature scheme in the PALISADE library [? ], which
is a modular open-source lattice-based cryptography library. The library uses native data types, but does not

employ any platform-specific optimizations, such as assembly-level routines.

PALISADE uses a layered approach with four software layers, each including a collection of C++ classes to

provide encapsulation, low inter-class coupling and high intra-class cohesion. The software layers are as follows:

(1) The cryptographic layer supports cryptographic protocols such as homomorphic encryption schemes

through calls to lower layers.

(2) The encoding layer supports plaintext encodings for cryptographic schemes.

(3) The lattice constructs layer supports power-of-two and arbitrary cyclotomic rings (coefficient, Chinese

Remainder Theorem (CRT), and double-CRT representations). Lattice operations are decomposed into

primitive arithmetic operations on integers, vectors, and matrices here.

(4) The arithmetic layer provides basic modular operations (multiple multiprecision and native math backends

are supported), implementations of Number-Theoretic Transform (NTT), Fermat-Theoretic Transform

(FTT), and Bluestein FFT. The integer distribution samplers are implemented in this layer.

The work in this paper adds several new capabilities to a new PALISADE module called “trapdoor” (the module

is expected to be publicly released with PALISADE v1.3 in the third quarter of 2018), which includes the following

new features broken down by layer:

• Implementations of the GPV signature in the cryptographic layer.

• Trapdoor sampling, including ring-LWE trapdoor generation, G-sampling and perturbation generation

routines in the lattice layer. Cyclotomic fieldsK2n and additional polynomial/ double-CRT operations, such

as polynomial transposition, are also in this layer.

• Generic integer Gaussian samplers and a Cooley-Tukey transform based on complex roots of unity in the

arithmetic layer.

Our software library uses both native 64-bit math backend and a custom multi-precision math backend.

For experiments with modulus q under 32 bits, we used the backend wrapped around the native C++ 64-bit

unsigned integer data type. For computations dealing with the modulus higher than 32 bits, we relied on a custom

multiprecision backend without external dependencies.

5 EXPERIMENTAL RESULTS

5.1 Test bed
We conducted all experiments on a commodity desktop computing environment. The evaluation environment

used an Intel Core i7-3770 CPU with four cores (eight logical processors) rated at 3.40GHz and 16GB of memory

running CentOS 7.

We performed our experiments for five values of ring dimension n from 512 to 8192. This range covers most

of the cryptography protocols based on strong lattice trapdoors. For n = 512 and n = 1024, we used the same

modulus bit width as in [9]. For higher values of n, we used the median bit widths satisfying the security constraint

δ < 1.006 discussed in Section 4.3.

In the experiments for n = 512 and n = 1024, we used the native 64-bit mathematical backend. For higher

values of ring dimension n, we relied on a custom multiprecision mathematical backend.

5.2 Single-threaded experiments
The runtimes of key generation (TrapGen), signing (GaussSamp), and verification, and the file sizes of pub-

lic/private keys and signature x for single-threaded experiments, are listed in Table 2. The file sizes were computed
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Table 2. Runtime and space requirements for single-threaded experiments

n k
Runtime [ms] Size [kB]

Key generation Signing Verification Public key Private key Signature

512 24 9.5 27 0.33 73 57 55

1024 27 17.2 62.5 0.68 173 120 135

2048 55 283 629 23 1,439 489 587

4096 108 2,052 3,940 166 11,100 1,921 2,456

8192 214 16,560 28,360 1,236 87,160 7,613 10,351

Fig. 1. Profile of the signing (preimage sampling) runtime for n = 1024 (native 64-bit mathematical backend)

Fig. 2. Profile of the signing (preimage sampling) runtime for n = 4096 (multiprecision mathematical backend)
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based on the serialized representation of the keys and signature. The values of n = 512 and n = 1024 corre-

spond to approximately 100-bit secure digital signatures. The higher values of n correspond to more advanced

cryptographic protocols, such as attribute-based encryption and conjunction obfuscation.

Table 2 suggests that the signing (preimage sampling) time is the main runtime bottleneck, and public key

requires the largest storage. Key generation is a one-time operation that runs quickly and requires no extra

storage (for the Cholesky decomposition) in contrast to the results reported in [9]. Verification, which is based on

a single inner product of vectors of polynomials, is more than one order of magnitude faster than the signing

time.

Our key generation runtime is approximately 3 orders of magnitude smaller then the one reported in [9]

(Table 1 includes both numbers). Our signing time is the same for n = 512 and slightly faster for n = 1024.

Our verification time is approximately one order of magnitude smaller. Note that the implementation in [9]

used a power-of-two modulus because an efficient algorithm for G-sampling in the case of a non-power-of-two

modulus was not available. Although a power-of-two modulus can be used for the GPV signature, many advanced

cryptographic primitives, such as attribute-based encryption [2] and conjunction obfuscation [4], are formulated

for a prime modulus.

To the best of our knowledge, there are no benchmarks in literature for lattice trapdoor operations relying

on n > 1024. Experiments for larger n would require significant storage for the Cholesky decomposition matrix

when using the perturbation sampling methods developed in [9, 18].

As the preimage sampling GaussSamp is the main bottleneck in lattice trapdoor operations, we profiled it

using Callgrind
3
for the cases of n = 1024 and n = 4096, which correspond to the native 64-bit and multiprecision

mathematical backends, respectively. The profiles are depicted in Figures 1 and 2. As can be seen in Algorithm

2, the preimage sampling operation can be broken down into four major components: SamplePZ , SampleG,

CRT operations when converting z to ẑ, and three polynomials products, namely, Ap, êẑ, and r̂ẑ. The combined

contribution of these four components to preimage sampling in all our experiments was always above 95%.

Figure 1 shows that the perturbation sampling SamplePZ accounts for 43% of GaussSamp in the case of the

native 64-bit mathematical backend. It should be noted that this operation is considered offline in [18] since it

does not depend on the syndrome, i.e., a hash in the case of the GPV digital signature. This operation can be

performed independently, and the perturbation vectors can be fed to the preimage sampler on demand.

The G-sampling operation accounts for 50% of the GaussSamp runtime. Further analysis shows that 34%

(with respect to GaussSamp) of CPU time is consumed by rejection sampling. This suggests that a more efficient

integer sampling method, such as the one recently proposed in [20], can substantially improve the performance of

G-sampling in this case. A further improvement can be achieved using loop parallelization. As noted in Algorithm

3, all coefficients in the sampled polynomial can be generated in parallel, thus creating an opportunity for loop

parallelization in a multi-threaded configuration.

The combined contribution of CRT operations and polynomial products is only 4% as all modular arithmetic

operations are performed using the native C++ uint64_t integer data type.

Figure 2 provides a different profile for the case of multiprecision mathematical backend. Although the

contribution of SamplePZ is approximately the same (52%), the contribution of G-sampling is much smaller

(only 10%) and the contributions of CRT and polynomial products operations are much larger, that is, 24% and

12%, respectively. This implies that further improvement can be achieved by optimizing the modular arithmetic

operations of the multiprecision mathematical backend. Another opportunity is to explore loop parallelization

for the CRT step in GaussSamp as the NTT operation is performed for k independent polynomials.

We also performed experiments for the case when the G-sampling procedure of [11] and the perturbation

generation procedure of [9] are used for sampling the lattices with a prime modulus. Our results for n ≤ 1024

3
http://valgrind.org/docs/manual/cl-manual.html
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showed that the runtime of G-sampling for lattices with a prime modulus was comparable to the one reported

in [9] for a power-of-two modulus (the prime modulus variant was approximately three times slower than the

power-of-two one). This supports the claim made in [11] that the complexity and expected runtime of their

G-sampling for an arbitrary modulus is comparable to the G-sampling for a power-of-two modulus developed in

[18].

5.3 Multi-threaded experiments
Multi-threading of our implementation was performed using OpenMP 4.0

4
. There are two approaches to paral-

lelization of lattice trapdoor operations via multi-threading. The first one, which we call loop parallelization,

focuses on the parallelization inside individual trapdoor generation, preimage sampling, and verification op-

erations. The second approach, which we call batch parallelization, relies on parallel processing of a batch of

preimage sampling or verification operations.

5.3.1 Loop parallelization inside lattice trapdoor operations. The loop parallelization inside individual lattice

trapdoor operations allows one to reduce the actual runtime of a single trapdoor generation or preimage sampling

on a multi-core machine. This approach to parallelization can be used for any cryptographic primitive based on

lattice trapdoors.

In Algorithms 1 and 2 we identified two loops that deal with a large number of CRT operations that can

be performed in parallel. In Algorithm 1, two row vectors of polynomials r̂ and ê need to be converted from

the coefficient representation to the evaluation one. Each row vector contains k independent polynomials. In

Algorithm 2 the conversion of z to ẑ requires k independent CRT operations. We used the OpenMP parallelization

for these loops.

As the sampling for each coefficient of the syndrome u in Algorithm 3 can be performed in parallel, we used

the OpenMP parallelization for this loop.

Figure 3 shows the effect of increasing the number of threads on the pre-image sampling runtime on a 4-core

machine with 8 threads. It can be seen that the maximum runtime reduction observed on a 4-core machine

was by a factor of 2 (for n = 2048 . . . 8192). The runtime reduction for the cases of n ≤ 1024 was roughly by

one-fourth. The latter can be explained using Figure 1. In the case of n ≤ 1024, the loop optimization primarly

affected SampleG, and the CRT parallelization had a little effect as its contribution to GaussSamp is relatively

small. Thus we observe only a net effect of the parallelization of SampleG, which is only 50% of the GaussSamp

execution time. Note that the runtimes for 4 and 8 threads are approximately the same because the processor has

only 4 physical cores, and the total number of 8 threads is achieved via hyper-threading.

In the case of larger n, the contribution of CRT operations becomes more significant, as can be seen in Figure

2. The net effect of CRT directly in GaussSamp is 24%. Another CRT for a vector of the same size is performed

inside SamplePZ . So the total contribution of CRT operations is roughly 50%. Moreover, SampleG accounts for

additional 10%. Coupled with substantially larger running times for parallelized subroutines (primarily CRT), this

provides a better runtime reduction.

Table 3 lists the runtimes for the optimal mode corresponding to 4 threads. The key generation time gets

reduced more than by a factor of 2 for n ≥ 2048 and by a factor of 1.5 for n ≤ 1024. The verification runtime is

approximately the same as in the single-threaded mode because we did not turn on loop parallelization at the

level of modular multiplications of polynomial components (the overhead of thread management observed at this

more granular level outweighted the benefits of loop parallelization).

5.3.2 Batch parallelization. Batch parallelization deals with processingmultiple preimage sampling or verification

operations in parallel. This parallelization does not decrease the runtime of each individual operation but increases

4
http://www.openmp.org/
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Fig. 3. Runtime improvement with increasing number of threads for the loop parallelization mode

Fig. 4. Runtime improvement with increasing number of threads for the batch parallelization mode

the throughput. This approach to parallelization can be used effectively when a batch of signatures is being

generated or verified. It can also be used in lattice-based cryptography protocols that operate with matrices of

private keys, such as conjunction obfuscation [4].

Figure 4 illustrates the effect of batch parallelization on preimage sampling time for different numbers of

threads and ring dimensions. It can be seen that for n ≥ 2048 we observe almost perfect runtime reduction (by
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Table 3. Runtime in the multi-threaded mode with loop parallelization inside lattice operations. All experiments were
conducted for 4 threads (equal to number of cores), which is optimal for the loop parallelization mode

n k
Runtime [ms]

Key generation Signing Verification

512 24 6.5 21 0.35

1024 27 7.8 45.6 0.72

2048 55 127 366 22.9

4096 108 815 2,135 160

8192 214 6,161 14,885 1,235

a factor of 4 for a 4-core machine). The runtime reduction is slightly smaller for n ≤ 1024 most likely due to

inefficiencies in the PRNG used for integer sampling (a PRNG singleton is used by our implementation).

Table 4 lists the runtime for 8 threads, which is the optimal mode in the case of batch parallelization. The

parallelization was only applied to the preimage sampling and verification operations. It can be seen that

verification runtime also reduces by approximately a factor of 4.

Table 4. Runtime in themulti-threadedmodewith batching of signing/verification operations. All experiments were conducted
for 8 threads (equal to number of logical processors), which is optimal for the batch mode of parallelization

n k
Normalized runtime [ms]

Key generation Signing Verification

512 24 6.9 8.9 0.066

1024 27 7.8 19.8 0.15

2048 55 127 169 6.2

4096 108 820 1,063 45

8192 214 6,160 7,740 359

6 CONCLUDING REMARKS
In this paper we implement in software a variation of trapdoor sampling based on approaches in [11] for the case

of power-of-two cyclotomic rings with a prime modulus. We evaluate the scalability and runtime performance of

our implementation using the GPV hash-and-sign digital signature primitive developed in [13]. Our runtimes are

substantially faster and storage requirements are dramatically smaller than for prior implementations [9].

Our experimental results for larger values of ring dimension and moduli suggest that this implementation can

be applied to many other lattice cryptographic protocols based on power-of-two cyclotomic rings with prime

moduli, including identity-based encryption [13], attribute-based encryption [2], and conjunction obfuscation

[4].

Our analysis implies that the runtime performance of preimage sampling can be further improved by using

faster integer sampling methods, such as the ones recently proposed in [20], more efficient multiprecision modular

arithmetic implementations, and multi-threaded parallelization at a lower implementation level, for instance, by

parallelizing vector operations. As our implementation operates on double-precision floating-point numbers and

has no external dependencies, it can be applied to GPU systems to achieve a dramatic improvement in preimaging

runtime.

Our implementation can be extended to support arbitrary moduli and rings over arbitrary cyclotomic polyno-

mials as the underlying algorithms [11] support this more general configuration.
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