91 research outputs found
Depth alone is an inappropriate proxy for physiological change in the mesophotic coral Agaricia lamarcki
The physiology of mesophotic Scleractinia varies with depth in response to environmental change. Previous research has documented trends in heterotrophy and photosynthesis with depth, but has not addressed between-site variation for a single species. Environmental differences between sites at a local scale and heterogeneous microhabitats, because of irradiance and food availability, are likely important factors when explaining the occurrence and physiology of Scleractinia. Here, 108 colonies of Agaricia lamarcki were sampled from two locations off the coast of Utila, Honduras, distributed evenly down the observed 50 m depth range of the species. We found that depth alone was not sufficient to fully explain physiological variation. Pulse Amplitude-Modulation fluorometry and stable isotope analyses revealed that trends in photochemical and heterotrophic activity with depth varied markedly between sites. Our isotope analyses do not support an obligate link between photosynthetic activity and heterotrophic subsidy with increasing depth. We found that A. lamarcki colonies at the bottom of the species depth range can be physiologically similar to those nearer the surface. As a potential explanation, we hypothesize sites with high topographical complexity, and therefore varied microhabitats, may provide more physiological niches distributed across a larger depth range. Varied microhabitats with depth may reduce the dominance of depth as a physiological determinant. Thus, A. lamarcki may ‘avoid’ changes in environment with depth, by instead existing in a subset of favourable niches. Our observations correlate with site-specific depth ranges, advocating for linking physiology and abiotic profiles when defining the distribution of mesophotic taxa
Estimating HIV transmissions in a large U.S. clinic-based sample: effects of time and syndemic conditions
Introduction: Little is known about onward HIV transmissions from people living with HIV (PLWH) in care. Antiretroviral therapy (ART) has increased in potency, and treatment as prevention (TasP) is an important component of ending the epidemic. Syndemic theory has informed modelling of HIV risk but has yet to inform modelling of HIV transmissions. Methods: Data were from 61,198 primary HIV care visits for 14,261 PLWH receiving care through the Centers for AIDS Research (CFAR) Network of Integrated Clinical Systems (CNICS) at seven United States (U.S.) sites from 2007 to 2017. Patient-reported outcomes and measures (PROs) of syndemic conditions – depressive symptoms, anxiety symptoms, drug use (opiates, amphetamines, crack/cocaine) and alcohol use – were collected approximately four to six months apart along with sexual behaviours (mean = 4.3 observations). Counts of syndemic conditions, HIV sexual risk group and time in care were modelled to predict estimated HIV transmissions resulting from sexual behaviour and viral suppression status (HIV RNA \u3c 400/mL) using hierarchical linear modelling. Results: Patients averaged 0.38 estimated HIV transmissions/100 patients/year for all visits with syndemic conditions measured (down from 0.83, first visit). The final multivariate model showed that per 100 patients, each care visit predicted 0.05 fewer estimated transmissions annually (95% confidence interval (CI): 0.03 to 0.06; p \u3c 0.0005). Cisgender women, cisgender heterosexual men and cisgender men of undisclosed sexual orientation had, respectively, 0.47 (95% CI: 0.35 to 0.59; p \u3c 0.0005), 0.34 (95% CI: 0.20 to 0.49; p \u3c 0.0005) and 0.22 (95% CI: 0.09 to 0.35; p \u3c 0.005) fewer estimated HIV transmissions/100 patients/year than cisgender men who have sex with men (MSM). Each within-patient syndemic condition predicted 0.18 estimated transmissions/100 patients/year (95% CI: 0.12 to 0.24; p \u3c 0.0005). Each between-syndemic condition predicted 0.23 estimated HIV transmissions/100 patients/year (95% CI: 0.17 to 0.28; p \u3c 0.0005). Conclusions: Estimated HIV transmissions among PLWH receiving care in well-resourced U.S. clinical settings varied by HIV sexual risk group and decreased with time in care, highlighting the importance of TasP efforts. Syndemic conditions remained a significant predictor of estimated HIV transmissions notwithstanding the effects of HIV sexual risk group and time in care
Health Diplomacy the Adaptation of Global Health Interventions to Local Needs in sub-Saharan Africa and Thailand: Evaluating Findings from Project Accept (HPTN 043).
Study-based global health interventions, especially those that are conducted on an international or multi-site basis, frequently require site-specific adaptations in order to (1) respond to socio-cultural differences in risk determinants, (2) to make interventions more relevant to target population needs, and (3) in recognition of 'global health diplomacy' issues. We report on the adaptations development, approval and implementation process from the Project Accept voluntary counseling and testing, community mobilization and post-test support services intervention. We reviewed all relevant documentation collected during the study intervention period (e.g. monthly progress reports; bi-annual steering committee presentations) and conducted a series of semi-structured interviews with project directors and between 12 and 23 field staff at each study site in South Africa, Zimbabwe, Thailand and Tanzania during 2009. Respondents were asked to describe (1) the adaptations development and approval process and (2) the most successful site-specific adaptations from the perspective of facilitating intervention implementation. Across sites, proposed adaptations were identified by field staff and submitted to project directors for review on a formally planned basis. The cross-site intervention sub-committee then ensured fidelity to the study protocol before approval. Successfully-implemented adaptations included: intervention delivery adaptations (e.g. development of tailored counseling messages for immigrant labour groups in South Africa) political, environmental and infrastructural adaptations (e.g. use of local community centers as VCT venues in Zimbabwe); religious adaptations (e.g. dividing clients by gender in Muslim areas of Tanzania); economic adaptations (e.g. co-provision of income generating skills classes in Zimbabwe); epidemiological adaptations (e.g. provision of 'youth-friendly' services in South Africa, Zimbabwe and Tanzania), and social adaptations (e.g. modification of terminology to local dialects in Thailand: and adjustment of service delivery schedules to suit seasonal and daily work schedules across sites). Adaptation selection, development and approval during multi-site global health research studies should be a planned process that maintains fidelity to the study protocol. The successful implementation of appropriate site-specific adaptations may have important implications for intervention implementation, from both a service uptake and a global health diplomacy perspective
A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations
<p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Safety and immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in children in Sierra Leone: a randomised, double-blind, controlled trial
Background—Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vectorbased vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone.
Methods—This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1–17 years were enrolled in three age cohorts (12–17 years, 4–11 years, and 1–3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494.
Findings—From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1–3 years after placebo injection to 21% (30 of 144) of children aged 4–11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12–17 years and 4–11 years age cohorts after the first and second dose, and pyrexia in the 1–3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12–17 years (9929 ELISA units [EU]/mL [95% CI 8172–12 064]), in 119 (99%) of 120 aged 4–11 years (10 212 EU/mL [8419–12 388]), and in 118 (98%) of 121 aged 1–3 years (22 568 EU/mL [18 426–27 642]).
Interpretation—The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1–17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children
- …