61 research outputs found

    Approximate Profile Maximum Likelihood

    Full text link
    We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appealing theoretical properties, but is difficult to compute exactly. Inspired by observations gleaned from exactly solvable cases, we look for an approximate PML solution, which, intuitively, clumps comparably frequent symbols into one symbol. This amounts to lower-bounding a certain matrix permanent by summing over a subgroup of the symmetric group rather than the whole group during the computation. We extensively experiment with the approximate solution, and find the empirical performance of our approach is competitive and sometimes significantly better than state-of-the-art performance for various estimation problems

    3D printing with star-shaped strands: a new approach to enhance in vivo bone regeneration

    Get PDF
    Concave surfaces have shown to promote bone regeneration in vivo. However, bone scaffolds obtained by direct ink writing, one of the most promising approaches for the fabrication of personalized bone grafts, consist mostly of convex surfaces, since they are obtained by microextrusion of cylindrical strands. By modifying the geometry of the nozzle, it is possible to print 3D structures composed of non-cylindrical strands and favor the presence of concave surfaces. In this work, we compare the in vivo performance of 3D-printed calcium phosphate scaffolds with either conventional cylindrical strands or star-shaped strands, in a rabbit femoral condyle model. Monocortical defects, drilled in contralateral positions, are randomly grafted with the two scaffold configurations, with identical composition. The samples are explanted eight weeks post-surgery and assessed by µ-CT and resin-embedded histological observations. The results reveal that the scaffolds containing star-shaped strands have better osteoconductive properties, guiding the newly formed bone faster towards the core of the scaffolds, and enhance bone regeneration, although the increase is not statistically significant (p > 0.05). This new approach represents a turning point towards the optimization of pore shape in 3D-printed bone grafts, further boosting the possibilities that direct ink writing technology offers for patient-specific applications.Peer ReviewedPostprint (published version

    Study of Quasispecies Complexity and Liver Damage Progression after Liver Transplantation in Hepatitis C Virus Infected Patients

    Get PDF
    Fibrosis; Hepatitis C virus; Viral loadFibrosis; Virus de la hepatitis C; Carga viralFibrosi; Virus de l'hepatitis C; Càrrega viralCirrhosis derived from chronic hepatitis C virus (HCV) infection is still a common indication for liver transplantation (LT). Reinfection of the engrafted liver is universal in patients with detectable viral RNA at the time of transplant and causes fast progression of cirrhosis (within 5 years) in around one-third of these patients. To prevent damage to the liver graft, effective direct-acting antiviral (DAA) therapy is required as soon as possible. However, because of post-LT clinical instability, it is difficult to determine the optimal time to start DAAs with a low risk of complications. Evaluate changes in quasispecies complexity following LT and seek a predictive index of fast liver damage progression to determine the timing of DAA initiation. HCV genomes isolated from pre-LT and 15-day post-LT serum samples of ten patients, who underwent orthotopic LT, were quantified and sequenced using a next-generation sequencing platform. Sequence alignments, phylogenetic trees, quasispecies complexity measures, biostatistics analyses, adjusted R2 values, and analysis of variance (ANOVA) were carried out. Three different patterns of reinfection were observed (viral bottlenecking, conserved pre-LT population, and mixed populations), suggesting that bottlenecking or homogenization of the viral population is not a generalized effect after liver graft reinfection. None of the quasispecies complexity measures predicted the future degree of liver damage. Higher and more uniform viral load (VL) values were observed in all pre-LT samples, but values were more dispersed in post-LT samples. However, VL increased significantly from the pre-LT to 15-day post-LT samples in patients with advanced fibrosis at 1-year post-LT, suggesting that a VL increase on day 15 may be a predictor of fast liver fibrosis progression. HCV kinetics after LT differ between patients and are not fibrosis-dependent. Higher VL at day 15 post-LT versus pre-LT samples may predict fast liver fibrosis progression.This study was supported by grants from Instituto de Salud Carlos III cofinanced by the European Regional Development Fund (ERDF) with grant numbers PI19/00533, PI19/00301, Clinical Trial Gov. Identifier: NCT01707849, and from Centro para el Desarrollo Tecnológico Industrial-CDTI of the Spanish Ministry of Economics and Competitiveness (MINECO) grant number, IDI-20200297. C.P. is supported by the Miguel Servet program of Instituto de Salud Carlos III, grant CP14/00121, cofinanced by the ERDF. Astellas Pharma Inc and Novartis Pharma also provided funding for the study, but these companies had had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript

    Amino acid substitutions associated with treatment failure of hepatitis C virus infection

    Get PDF
    Trabajo presentado en el XVI Congreso Nacional de Virología, celebrado en Málaga (España) del 06 al 09 de septiembre de 2022.Despite the high sustained virological response rates achieved with current directly-acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of patients do not achieve such a response. Identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultra-deep sequencing (UDS) methods for HCV characterization and patient management. By deep sequencing analysis of 220 subtyped HCV samples from infected patients who failed therapy, collected from 39 Spanish hospitals, we determined amino acid sequences of the DAA-target proteins NS3, NS5A and NS5B, by UDS of HCV patient samples, in search of resistanceassociated substitutions (RAS). Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide RAS. They were present frequently in basal and post-treatment virus of patients who failed therapy to different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Coherently, their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. Also, they have limited predicted disruptive effects on the threedimensional structures of the proteins harboring them. The information on HRSs that will be gathered during sequencing should be relevant not only to help predict treatment outcomes and disease progression but also to further understand HCV population dynamics, which appears much more complex than thought prior to the introduction of deep sequencing.The work at CBMSO was supported by grants SAF2014-52400-R from MINECO, SAF2017-87846-R and BFU2017-91384-EXP MICIU, PI18/00210 from ISCIII, S2013/ABI-2906 (PLATESA) and S2018/BAA-4370 (PLATESA2) from Comunidad de Madrid/FEDER. C.P. is supported by the Miguel Servet program of the ISCIII (CP14/00121 and CPII19/00001), cofinanced by the European Regional Development Fund (ERDF). CIBERehd is funded by ISCIII. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). The work in Barcelona was supported by ISCIII, cofinanced by ERDF grant number PI19/00301 and by the Centro para el Desarrollo Tecnológico Industrial (CDTI) from the MICIU, grant number IDI20151125. Work at CAB was supported by MINECO grant BIO2016-79618R and PID2019-104903RB-I00 (funded by the EU under the FEDER program) and by the Spanish State research agency (AEI) through project number MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (CSIC-INTA). Work at IBMB was supported by MICIN grant BIO2017-83906-P (funded by the EU under the FEDER program). C.G.-C. is supported by predoctoral contract PRE2018-083422 from MICIU. B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo), cofinanced by Fondo Social Europeo (FSE).Peer reviewe

    SARS-CoV-2 mutant spectra reveal differences between COVID-19 severity categories

    Get PDF
    Trabajo presentado en el XVI Congreso Nacional de Virología, celebrado en Málaga (España) del 06 al 09 de septiembre de 2022.RNA virus populations are composed of complex mixtures of genomes that are termed mutant spectra. SARS-CoV-2 replicates as a viral quasispecies, and mutations that are detected at low frequencies in a host can be dominant in subsequent variants. We have studied mutant spectrum complexities of SARS-CoV-2 populations derived from thirty nasopharyngeal swabs of patients infected during the first wave (April 2020) in the Hospital Universitario Fundación Jiménez Díaz. The patients were classified according to the COVID-19 severity in mild (non-hospitalized), moderate (hospitalized) and exitus (hospitalized with ICU admission and who passed away due to COVID-19). Using ultra-deep sequencing technologies (MiSeq, Illumina), we have examined four amplicons of the nsp12 (polymerase)-coding region and two amplicons of the spike-coding region. Ultra-deep sequencing data were analyzed with different cut-off frequency for mutation detection. Average number of different point mutations, mutations per haplotype and several diversity indices were significantly higher in SARS-CoV-2 isolated from patients who developed mild disease. A feature that we noted in the SARS-CoV-2 mutant spectra from diagnostic samples is the remarkable absence of mutations at intermediate frequencies, and an overwhelming abundance of mutations at frequencies lower than 10%. Thus, the decrease of the cut-off frequency for mutation detection from 0.5% to 0.1% revealed an increasement (50- to 100 fold) in the number of different mutations. The significantly higher frequency of mutations in virus from patients displaying mild than moderate or severe disease was maintained with the 0.1% cut- off frequency. To evaluate whether the frequency repertoire of amino acid substitutions differed between SARS-CoV-2 and the well characterized hepatitis C virus (HCV), we performed a comparative study of mutant spectra from infected patients using the same bioinformatics pipelines. HCV did not show the deficit of intermediate frequency substitutions that was observed with SARS-CoV-2. This difference was maintained when two functionally equivalent proteins, the corresponding viral polymerases, were compared. In conclusion, SARS-CoV-2 mutant spectra are rich reservoirs of mutants, whose complexity is not uniform among clinical isolates. Virus from patients who developed mild disease may be a source of new variants that may acquire epidemiological relevance.This work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and In-novation (COVID-19 Research Call COV20/00181), and co-financed by European Development Regional Fund ‘A way to achieve Europe’. The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Científicas (CSIC), project 525/C/2021 from Fundació La Marató de TV3, PID2020-113888RB-I00 from Ministerio de Ciencia e Innovación, BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MCIU), PI18/00210 and PI21/00139 from Instituto de Salud Carlos III, and S2018/BAA-4370 (PLATESA2 from Comunidad de Madrid/FEDER). C.P., M.C., and P.M. are supported by the Miguel Servet programme of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006, and CP16/00116, respectively) co-financed by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investi-gación en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R.L.-V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. C.G.-C. is sup-ported by predoctoral contract PRE2018-083422 from MCIU. BS was supported by a predoctoral research fellowship (Doctorados Industriales, DI-17-09134) from Spanish MINECO
    corecore