11 research outputs found

    Feedbacks between sea-floor spreading, trade winds and precipitation in the Southern Red Sea

    Get PDF
    Feedbacks between climatic and geological processes are highly controversial and testing them is a key challenge in Earth sciences. The Great Escarpment of the Arabian Red Sea margin has several features that make it a useful natural laboratory for studying the effect of surface processes on deep Earth. These include strong orographic rainfall, convex channel profiles versus concave swath profiles on the west side of the divide, morphological disequilibrium in fluvial channels, and systematic morphological changes from north to south that relate to depth changes of the central Red Sea. Here we show that these features are well interpreted with a cycle that initiated with the onset of spreading in the Red Sea and involves feedbacks between orographic precipitation, tectonic deformation, mid-ocean spreading and coastal magmatism. It appears that the feedback is enhanced by the moist easterly trade winds that initiated largely contemporaneously with sea floor spreading in the Red Sea

    Tectonic geomorphology at small catchment sizes extensions of the stream-power approach and the method

    No full text
    Quantitative tectonic geomorphology hinges on the analysis of longitudinal river profiles. The model behind almost all approaches in this field originates from an empirical relationship between channel slope and catchment size, often substantiated in the form of the stream-power model for fluvial incision. Significant methodological progress was recently achieved by introducing the transform. It defines a nonlinear length coordinate in such a way that the inherent curvature of river profiles due to the increase of catchment sizes in the downstream direction is removed from the analysis. However, the limitation to large catchment sizes inherited from the stream-power approach for fluvial incision persists. As a consequence, only a small fraction of all nodes of a digital elevation model (DEM) can be used for the analysis. In this study we present and discuss some empirically derived extensions of the stream power law towards small catchment sizes in order to overcome this limitation. Beyond this, we introduce a simple method for estimating the adjustable parameters in the original method as well as in our extended approaches. As a main result, an approach originally suggested for debris flow channels seems to be the best approximation if both large and small catchment sizes are included in the same analysis.(VLID)214713

    Earth Surface Dynamics / The destiny of orogen-parallel streams in the Eastern Alps : the SalzachEnns drainage system

    No full text
    The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages of the alpine orogeny. Crustal-scale faults imposed eastward-directed orogen-parallel flow on major rivers, whereas late orogenic surface uplift increased topographic gradients between the foreland and range and hence the vulnerability of such rivers to be captured. This leads to a situation in which major orogen-parallel alpine rivers such as the Salzach River and the Enns River are characterized by elongated eastwest-oriented catchments south of the proposed capture points, whereby almost the entire drainage area is located west of the capture point. To determine the current stability of drainage divides and to predict the potential direction of divide migration, we analysed their geometry at catchment, headwater and hillslope scale covering timescales from millions of years to the millennial scale. We employ mapping for different base levels, generalized swath profiles across drainage divides and Gilbert metrics a set of local topographic metrics quantifying the asymmetry of drainage divides at hillslope scale. Our results show that most drainage divides are asymmetric, with steeper channels west and flatter channels east of a common drainage divide. Interpreting these results, we propose that drainage divides migrate from west towards east so that the Inn catchment grows at the expense of the Salzach catchment and the Salzach catchment consumes the westernmost tributaries of the Mur and Enns catchments. Gilbert metrics across the SalzachEnns and SalzachMur divides are consistent with inferred divide mobility. We attribute the absence of divide asymmetry at the InnSalzach divide to glacial landforms such as cirques and U-shaped valleys, which suggest that Pleistocene climate modulations are able to locally obscure the large-scale signal of drainage network reorganization. We suggest that the eastward-directed divide migration progressively leads to symmetric catchment geometries, whereby tributaries west and east of the capture point eventually contribute equally to the drainage area. To test this assumption, we have reconstructed the proposed drainage network geometries for different time slices. mapping of these reconstructed drainage networks indicates a progressive stability of the network topology in the Eastern Alps towards the present-day situation.(VLID)473586

    Journal of Geophysical Research: Earth Surface / Glacial Steady State Topography Controlled by the Coupled Influence of Tectonics and Climate

    No full text
    Glaciers and rivers are the main agents of mountain erosion. While in the fluvial realm empirical relationships and their mathematical description, such as the stream power law, improved the understanding of fundamental controls on landscape evolution, simple constraints on glacial topography and governing scaling relations are widely lacking. We present a steady state solution for longitudinal profiles along eroding glaciers in a coupled system that includes tectonics and climate. We combined the shallow ice approximation and a glacial erosion rule to calculate ice surface and bed topography from prescribed glacier mass balance gradient and rock uplift rate. Our approach is inspired by the classic application of the stream power law for describing a fluvial steady state but with the striking difference that, in the glacial realm, glacier mass balance is added as an altitudedependent variable. From our analyses we find that ice surface slope and glacial relief scale with uplift rate with scaling exponents indicating that glacial relief is less sensitive to uplift rate than relief in most fluvial landscapes. Basic scaling relations controlled by either basal sliding or internal deformation follow a power law with the exponent depending on the exponents for the glacial erosion rule and Glen's flow law. In a mixed scenario of sliding and deformation, complicated scaling relations with variable exponents emerge. Furthermore, a cutoff in glacier mass balance or cold ice in high elevations can lead to substantially larger scaling exponents which may provide an explanation for high relief in high latitudes.J 3976 N-29(VLID)342930

    A two phase escarpment evolution of the Red Sea margin of southwestern Saudi Arabia. Insights from low-temperature apatite thermochronology

    No full text
    International audienceRifting of the Red Sea resulted in the formation of one of the highest escarpments on our planet: the Great Escarpment of southwestern Saudi Arabia. Published low-temperature geochronology ages are around the Paleogene-Neogene transition, but geomorphic features like the height, the steepness and the preservation of the escarpment may indicate a younger aspect to the exhumation history. Here we use apatite fission track (AFT) and (U-Th-Sm)/He (AHe) cooling ages in combination with a geomorphic analysis of the region from Jeddah to Jizan to test this idea. Pooled AFT ages range from to Ma (1σ). The base of the AFT partial annealing zone prior to rock uplift is at ∼200 m elevation in most of the studied area, but track length data show that the amount of exhumation is insufficient to affect all coastal plain samples. Consistent with earlier estimates in the literature, the total amount of rock uplift is estimated to be ∼4 km. Single grain AHe ages range from to Ma (1σ) and do not have a clear trend with distance from the escarpment. Overall, the distribution of data appears to indicate widespread downwearing of the elevated topography around the rift flank. In contrast, geomorphic analysis that indicates escarpment retreat including a flexural uplift response. We suggest that the conflict between geomorphological and geochronological data can be resolved by invoking a two-stage erosion model. The first stage involved dome-shaped rift flank uplift since initiation of the Afar plume, downwearing of this topography and cooling recorded by the AFT ages. The second stage involved the massive erosion that excavated the present day Saudi escarpment and reset the AHe ages. We suggest that this second stage is related to the formation of oceanic lithosphere since 13 Ma in the Red Sea, associated downwarping of the margin and flexural updoming of the eastern rift flank. The consequential orographic precipitation initiated asymmetric erosion and formation of a retreating escarpment. This model is consistent with the large age difference between Miocene AFT and Pliocene AHe ages and the geomorphic metrics

    Southwestward tilting of the Ordos Loess Plateau, central China: topographic response to India-Asia convergence deduced from drainage systems

    No full text
    International audienceThe Ordos Loess Plateau with its iconic fluvial incision pattern represents an uplifted but internally stable plateau crustal block on the eastern fringe of the Tibetan Plateau. The Ordos Loess Plateau deeply incised river landscapes and hence its inaccessibility helped to protect ancient China from invading nomads from the north. The Ordos Block is internally free of seismicity but its boundaries feature severe high-magnitude earthquakes. Due to the ongoing India-Asia convergence, the northeastward expansion of the Tibetan Plateau leading to the eastward lateral extrusion of fault-bounded blocks. The Ordos Loess Plateau is part of one of these blocks and is still affected by lateral eastward motion along crustal scale faults and large surface uplift from Late Miocene to present. In this study, we investigated the effect of fault activity on the morphological evolution of the Ordos Loess Plateau. To quantify the effect of uplift gradients on the drainage systems, we investigated topographic patterns and landform metrics through field surveys and topographic analysis based on digital elevation models. Field surveys show that the southern boundary of the Ordos Loess Plateau to the Weihe Graben is still tectonically active (evidence for faulting in quaternary sediments). We found that the drainage is consistently directed towards the Weihe Graben in the southeast. Fluvial channels are in a state of morphological disequilibrium, with steep channel segments towards the Weihe Graben and meandering low gradient rivers in the central Ordos Loess Plateau. Over substantial portions, the shape of the longitudinal channel profile in the Ordos Loess Plateau is straight and deviates from usual graded longitudinal channel profiles. We further found that the degree of erosion and plateau incision is pronounced in the eastern part of the Ordos Loess Plateau, while the southwestern part is less incised. The drainage network indicated that the drainage basins are tilted toward the Liupanshan Mountains overthrust in the southwest. We conclude that the far-field influence of the Cenozoic uplift of the Tibetan Plateau activated the southwestern and southern boundary faults around the Ordos Loess Plateau. The drainage systems reorganized to a principal southern flow direction and thereby progressively incised in the Ordos Loess Plateau, causing severe soil erosion

    Using Remote Sensing and GIS to Support Drinking Water Supply in Refugee/IDP Camps. GI_Forum|GI_Forum 2015 – Geospatial Minds for Society|

    No full text
    Supplying the population of a refugee or internally displaced persons (IDP) camp with sufficient drinking water is a key concern of humanitarian organisations. This requires information on the geological and hydrogeological situation at the camp site, which is often missing or not available within a reasonable timeframe. Depending on outcrop situation and geological complexity, remote sensing can contribute to a rapid hydrogeological assessment, and greatly reduce the required fieldwork. In the context of the project EO4HumEn (Earth Observation based services to support humanitarian operations: monitoring population and natural resources in refugee/IDP camps, funded by the Austrian Research Promotion Agency FFG, ASAP 9, Nr. 840081), a team of hydrogeologists and GIS experts supported by Médecins Sans Frontières (MSF) Austria developed a workflow to extract hydrogeological information from easily accessible remote sensing data in a series of short-term desk studies. This paper provides a condensed, structured protocol on how to produce hydrogeological reconnaissance maps for humanitarian purposes using remote sensing data and GIS. In simple geological settings, these maps can be sufficient to plan and conduct drillings. In more complex situations, fieldwork remains indispensable, but can be guided towards the most suitable locations

    Quantification of the damming and sediment trapping capacity of landslides and their dammed lakes: the example of the Hintersee landslide dam

    No full text
    International audiencePerennial landslide dams interrupt the sediment connectivity of rivers. Although most landslide dams do not persist for more than a few days, those that do can exhibit significant sediment trapping capacity. While water can pass through or over the dam, the sediment load is trapped upstream of the dam until the dam breaks or gradually erodes, or is completely filled with deposits. The volume of sediment stored in this way can reach up to three times the volume of impounded water, as we find by back-analyzing the lake Hintersee in southeastern Germany. In this work, we reconstruct the pre-landslide topography using Petrel and then use the Gerris shallow-water flow solver with a Voellmy rheology to back-analyze this landslide-dammed lake in the Bavarian Alps. We test several landslide release scenarios and different landslide rheologies to obtain the best-fitting reconstruction of the dam topography. We then fill the landslide dam with water and sediment using simple slope algorithms and validate the results against the current topography. Finally, we compare the landslide deposit thicknesses, water depths, and trapped sediment thicknesses of our different scenarios in order to provide new insight into the damming and sediment trapping capacity of landslides
    corecore