1,292 research outputs found
A Massive Protostar Embedded in the Scuba Core JCMT 18354-0649S
We report the discovery of an extremely red object embedded in the massive SCUBA core JCMT 18354-0649S. This object is not associated with any known radio or far-IR source, though it appears in Spitzer IRAC data obtained as part of the GLIMPSE survey. At shorter wavelengths, this embedded source exhibits an extreme color, K – L' = 6.7. At an assumed distance of 5.7 kpc, this source has a near-IR luminosity of ~1000 L_☉. Its spectral energy distribution (SED) rises sharply from 2.1 μm to 8 μm, similar to that of a Class 0 young stellar object. Theoretical modeling of the SED indicates that the central star has a mass of 6-12 M_☉, with an optical extinction of more than 30. As both inflow and outflow motions are present in JCMT 18354-0649S, we suggest that this deeply embedded source is (1) a massive protostar in the early stages of accretion, and (2) the driving source of a massive molecular outflow evident in HCN J = 3-2 profiles observed toward this region
The RMS Survey: The Bolometric Fluxes and Luminosity Distributions of Young Massive Stars
Context: The Red MSX Source (RMS) survey is returning a large sample of
massive young stellar objects (MYSOs) and ultra-compact (UC) \HII{} regions
using follow-up observations of colour-selected candidates from the MSX point
source catalogue. Aims: To obtain the bolometric fluxes and, using kinematic
distance information, the luminosities for young RMS sources with far-infrared
fluxes. Methods: We use a model spectral energy distribution (SED) fitter to
obtain the bolometric flux for our sources, given flux data from our work and
the literature. The inputs to the model fitter were optimised by a series of
investigations designed to reveal the effect varying these inputs had on the
resulting bolometric flux. Kinematic distances derived from molecular line
observations were then used to calculate the luminosity of each source.
Results: Bolometric fluxes are obtained for 1173 young RMS sources, of which
1069 have uniquely constrained kinematic distances and good SED fits. A
comparison of the bolometric fluxes obtained using SED fitting with trapezium
rule integration and two component greybody fits was also undertaken, and
showed that both produce considerable scatter compared to the method used here.
Conclusions: The bolometric flux results allowed us to obtain the luminosity
distributions of YSOs and UC\HII{} regions in the RMS sample, which we find to
be different. We also find that there are few MYSOs with L
10\lsol{}, despite finding many MYSOs with 10\lsol{} L
10\lsol{}.Comment: 12 pages, 12 figures, 3 tables, accepted to A&A. The full versions of
tables 1 and 2 will be available via the CDS upon publicatio
Galaxy Formation with local photoionisation feedback I. Methods
We present a first study of the effect of local photoionising radiation on
gas cooling in smoothed particle hydrodynamics simulations of galaxy formation.
We explore the combined effect of ionising radiation from young and old stellar
populations. The method computes the effect of multiple radiative sources using
the same tree algorithm used for gravity, so it is computationally efficient
and well resolved. The method foregoes calculating absorption and scattering in
favour of a constant escape fraction for young stars to keep the calculation
efficient enough to simulate the entire evolution of a galaxy in a cosmological
context to the present day. This allows us to quantify the effect of the local
photoionisation feedback through the whole history of a galaxy`s formation. The
simulation of a Milky Way like galaxy using the local photoionisation model
forms ~ 40 % less stars than a simulation that only includes a standard uniform
background UV field. The local photoionisation model decreases star formation
by increasing the cooling time of the gas in the halo and increasing the
equilibrium temperature of dense gas in the disc. Coupling the local radiation
field to gas cooling from the halo provides a preventive feedback mechanism
which keeps the central disc light and produces slowly rising rotation curves
without resorting to extreme feedback mechanisms. These preliminary results
indicate that the effect of local photoionising sources is significant and
should not be ignored in models of galaxy formation.Comment: Accepted for Publication in MNRAS, 13 pages, 13 figure
The Next Generation of the Montage Image Mosaic Toolkit
The scientific computing landscape has evolved dramatically in the past few years, with new schemes for organizing and storing data that reflect the growth in size and complexity of astronomical data sets. In response to this changing landscape, we are, over the next two years, deploying the next generation of the Montage toolkit ([ascl:1010.036]). The first release (October 2015) supports multi-dimensional data sets ("data cubes"), and insertion of XMP/AVM tags that allows images to "drop-in" to the WWT. The same release offers a beta-version of web-based interactive visualization of images; this includes wrappers for visualization in Python. Subsequent releases will support HEALPix (now standard in cosmic background experiments); incorporation of Montage into package managers (which enable automated management of software builds), and support for a library that will enable Montage to be called directly from Python. This next generation toolkit will inherit the architectural benefits of the current engine - component based tools, ANSI-C portability across Unix platforms and scalability for distributed processing. With the expanded functionality under development, Montage can be viewed not simply as a mosaic engine, but as a scalable, portable toolkit for managing, organizing and processing images
Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex
We present a catalog of 840 X-ray sources and first results from a 100 ks
Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud
G014.22500.506, which forms the central regions of a larger cloud complex
known as the M17 southwest extension (M17 SWex). In addition to the rich
population of protostars and young stellar objects with dusty circumstellar
disks revealed by Spitzer Space Telescope archival data, we discover a
population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS)
that lack infrared excess emission from circumstellar disks. We model the
infrared spectral energy distributions of this source population to measure its
mass function and place new constraints on the inner dust disk destruction
timescales for 2-8 stars. We also place a lower limit on the star
formation rate (SFR) and find that it is quite high ( yr), equivalent to several Orion Nebula Clusters in
G14.2250.506 alone, and likely accelerating. The cloud complex has not
produced a population of massive, O-type stars commensurate with its SFR. This
absence of very massive () stars suggests that either (1)
M17 SWex is an example of a distributed mode of star formation that will
produce a large OB association dominated by intermediate-mass stars but
relatively few massive clusters, or (2) the massive cores are still in the
process of accreting sufficient mass to form massive clusters hosting O stars.Comment: 29 pages, 9 figures, accepted to Ap
Candidate Coronagraphic Detections of Protoplanetary Disks around Four Young Stars
We present potential detections of H-band scattered light emission around
four young star, selected from a total sample of 45 young stars observed with
the CIAO coronagraph of the Subaru telescope. Two CTTS, CI Tau and DI Cep, and
two WTTS, LkCa 14 and RXJ 0338.3+1020 were detected. In all four cases, the
extended emission is within the area of the residual PSF halo, and is revealed
only through careful data reduction. We compare the observed extended emission
with simulations of the scattered light emission, to evaluate the plausibility
and nature of the detected emission.Comment: 9 Figures, 40 page
Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP's uncalibrated time ordered data than the official sky maps
The purpose of this reanalysis of the WMAP uncalibrated time ordered data
(TOD) was two fold. The first was to reassess the reliability of the detection
of the anisotropies in the official WMAP sky maps of the cosmic microwave
background (CMB). The second was to assess the performance of a proposed
criterion in avoiding systematic error in detecting a signal of interest. The
criterion was implemented by testing the null hypothesis that the uncalibrated
TOD was consistent with no anisotropies when WMAP's hourly calibration
parameters were allowed to vary. It was shown independently for all 20 WMAP
channels that sky maps with no anisotropies were a better fit to the TOD than
those from the official analysis. The recently launched Planck satellite should
help sort out this perplexing result.Comment: 11 pages with 1 figure and 2 tables. Extensively rewritten to explain
the research bette
Duration of Star Formation in Galactic Giant Molecular Clouds. I. The Great Nebula in Carina
We present a novel infrared spectral energy distribution (SED) modeling methodology that uses likelihood-based weighting of the model fitting results to construct probabilistic Hertzsprung–Russell diagrams (pHRD) for X-ray-identified, intermediate-mass (2–8 M⊙), pre-main-sequence young stellar populations. This methodology is designed specifically for application to young stellar populations suffering strong, differential extinction (ΔA_V > 10 mag), typical of Galactic massive star-forming regions. We pilot this technique in the Carina Nebula Complex (CNC) by modeling the 1–8 μm SEDs of 2269 likely stellar members that exhibit no excess emission from circumstellar dust disks at 4.5 μm or shorter wavelengths. A subset of ~100 intermediate-mass stars in the lightly obscured Trumpler 14 and 16 clusters have available spectroscopic T_(eff), measured from the Gaia-ESO survey. We correctly identify the stellar temperature in 85% of cases, and the aggregate pHRD for all sources returns the same peak in the stellar age distribution as obtained using the spectroscopic T_(eff). The SED model parameter distributions of stellar mass and evolutionary age reveal significant variation in the duration of star formation among four large-scale stellar overdensities within the CNC and a large distributed stellar population. Star formation began ~10 Myr ago and continues to the present day, with the star formation rate peaking ≾3 Myr ago when the massive Trumpler 14 and 16 clusters formed. We make public the set of 100,000 SED models generated from standard pre-main-sequence evolutionary tracks and our custom software package for generating pHRDs and mass–age distributions from the SED fitting results
A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)
We present the results of a Nobeyama 45-m water maser and ammonia survey of
all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive
young stellar objects (MYSOs) identified based on their extended 4.5 micron
emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and
detect emission towards 97%, 63%, and 46% of our sample, respectively (median
rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The
derived water maser and clump-scale gas properties are consistent with the
identification of EGOs as young MYSOs. To explore the degree of variation among
EGOs, we analyze subsamples defined based on MIR properties or maser
associations. Water masers and warm dense gas, as indicated by emission in the
higher-excitation ammonia transitions, are most frequently detected towards
EGOs also associated with both Class I and II methanol masers. 95% (81%) of
such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of
EGOs without either methanol maser type. As populations, EGOs associated with
Class I and/or II methanol masers have significantly higher ammonia linewidths,
column densities, and kinetic temperatures than EGOs undetected in methanol
maser surveys. However, we find no evidence for statistically significant
differences in water maser properties (such as maser luminosity) among any EGO
subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane
Survey, we find no correlation between isotropic water maser luminosity and
clump number density. Water maser luminosity is weakly correlated with clump
(gas) temperature and clump mass.Comment: Astrophysical Journal, accepted. Emulateapj, 24 pages including 24
figures, plus 9 tables (including full content of online-only tables
- …