4,233 research outputs found

    Enrollment Management Strategies at Rural Community Colleges Resulting from the Pandemic

    Get PDF
    Higher education institutions around the world were impacted by the COVID-19 pandemic that began in early 2020. Because U.S. community colleges focus on two-year degrees and workforce development, they were affected differently than their four-year counterparts. This study examined how academic administrators at different rural community colleges in Virginia, United States, perceived enrollment management practices that were implemented or changed due to the pandemic. This sequential explanatory study\u27s first phase was quantitative and measured mid- to senior-level administrators\u27 views of how the pandemic affected their colleges\u27 enrollment management practices. The second qualitative phase resulted in five themes surrounding COVID-related enrollment management practices: a) COVID-19 led to crisis management and operations in phases; b) managing student onboarding during COVID-19; c) COVID-19 created unique challenges for community college students; d) COVID-19 affected decision-making procedures; and e) COVID-19 resulted in work/life balance issues and COVID fatigue. Implications and future directions are provided to ensure that community college enrollment managers and policymakers understand how to continue to pivot to ensure student services are maintained or enhanced during a crisis

    Shared Aperture Dual S- And X-band Antenna for Nano-Satellite Applications

    Get PDF

    Phenotypic plasticity and population viability: the importance of environmental predictability

    Get PDF
    Phenotypic plasticity plays a key role in modulating how environmental variation influences population dynamics, but we have only rudimentary understanding of how plasticity interacts with the magnitude and predictability of environmental variation to affect population dynamics and persistence. We developed a stochastic individual-based model, in which phenotypes could respond to a temporally fluctuating environmental cue and fitness depended on the match between the phenotype and a randomly fluctuating trait optimum, to assess the absolute fitness and population dynamic consequences of plasticity under different levels of environmental stochasticity and cue reliability. When cue and optimum were tightly correlated, plasticity buffered absolute fitness from environmental variability, and population size remained high and relatively invariant. In contrast, when this correlation weakened and environmental variability was high, strong plasticity reduced population size, and populations with excessively strong plasticity had substantially greater extinction probability. Given that environments might become more variable and unpredictable in the future owing to anthropogenic influences, reaction norms that evolved under historic selective regimes could imperil populations in novel or changing environmental contexts. We suggest that demographic models (e.g. population viability analyses) would benefit from a more explicit consideration of how phenotypic plasticity influences population responses to environmental change

    Spatially resolved spectroscopy of the globular cluster RZ 2109 and the nature of its black hole

    Get PDF
    We present optical HST/STIS spectroscopy of RZ 2109, a globular cluster in the elliptical galaxy NGC 4472. This globular cluster is notable for hosting an ultraluminous X-ray source as well as associated strong and broad [OIII] 4959, 5007 emission. We show that the HST/STIS spectroscopy spatially resolves the [OIII] emission in RZ 2109. While we are unable to make a precise determination of the morphology of the emission line nebula, the best fitting models all require that the [OIII] 5007 emission has a half light radius in the range 3-7 pc. The extended nature of the [OIII] 5007 emission is inconsistent with published models that invoke an intermediate mass black hole origin. It is also inconsistent with the ionization of ejecta from a nova in the cluster. The spatial scale of the nebula could be produced via the photoionization of a strong wind driven from a stellar mass black hole accreting at roughly its Eddington rate.Comment: 7 pages, 4 figures - accepted for publication in Ap

    The Yellow Stingray, Urobatis jamaicensis (Chondrichthyes Urotrygonidae): A Synoptic Review

    Get PDF
    The yellow stingray, Urobatis jamaicensis (Cuvier) has been the subject of a multitude of diverse studies on its natural history, morphology, and physiology. We have attempted here to briefly review all the studies on U. jamaicensis both published and unpublished with the goal of providing comparative information for researchers working on related species as well as to highlight areas of research requiring further investigation in this one

    Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation

    Get PDF
    Estimates based on the strength, size, and shape of the Atlantic razor clam (Ensis directus) indicate that the animal's burrow depth should be physically limited to a few centimeters; yet razor clams can dig as deep as 70 cm. By measuring soil deformations around burrowing E. directus, we have found the animal reduces drag by contracting its valves to initially fail, and then fluidize, the surrounding substrate. The characteristic contraction time to achieve fluidization can be calculated directly from soil properties. The geometry of the fluidized zone is dictated by two commonly-measured geotechnical parameters: coefficient of lateral earth pressure and friction angle. Calculations using full ranges for both parameters indicate that the fluidized zone is a local effect, occurring between 1–5 body radii away from the animal. The energy associated with motion through fluidized substrate—characterized by a depth-independent density and viscosity—scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce energy costs associated with digging. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to find optimal digging kinematics, RoboClam has achieved localized fluidization burrowing performance comparable to that of the animal, with a linear energy-depth relationship, in both idealized granular glass beads and E. directus' native cohesive mudflat habitat.Battelle Memorial InstituteBluefin RoboticsChevron Corporatio
    • …
    corecore