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Abstract
Estimates based on the strength, size, and shape of the Atlantic razor clam (Ensis directus)
indicate that the animal’s burrow depth should be physically limited to a few centimeters; yet
razor clams can dig as deep as 70 cm. By measuring soil deformations around burrowing
E. directus, we have found the animal reduces drag by contracting its valves to initially fail,
and then fluidize, the surrounding substrate. The characteristic contraction time to achieve
fluidization can be calculated directly from soil properties. The geometry of the fluidized zone
is dictated by two commonly-measured geotechnical parameters: coefficient of lateral earth
pressure and friction angle. Calculations using full ranges for both parameters indicate that the
fluidized zone is a local effect, occurring between 1–5 body radii away from the animal. The
energy associated with motion through fluidized substrate—characterized by a
depth-independent density and viscosity—scales linearly with depth. In contrast, moving
through static soil requires energy that scales with depth squared. For E. directus, this
translates to a 10X reduction in the energy required to reach observed burrow depths. For
engineers, localized fluidization offers a mechanically simple and purely kinematic method to
dramatically reduce energy costs associated with digging. This concept is demonstrated with
RoboClam, an E. directus-inspired robot. Using a genetic algorithm to find optimal digging
kinematics, RoboClam has achieved localized fluidization burrowing performance comparable
to that of the animal, with a linear energy-depth relationship, in both idealized granular glass
beads and E. directus’ native cohesive mudflat habitat.

Keywords: biomimetics, bivalves, granular, burrowing

(Some figures may appear in colour only in the online journal)

1. Introduction

Burrowing in soil presents challenges in engineering and
biological applications alike. Many animals have developed
unique locomotion schemes to move through particulate

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

substrates [1]. The sandfish lizard (S. scincus) undulates in
the manner of a fish in order to effectively swim through
sand [2]. Clam worms (N. virens) have been observed to
use crack propagation to burrow in gelatin, a material with
similar properties to elastic muds [3]. Smaller organisms,
like nematodes (C. elegans), have been observed to move
efficiently via reciprocating motion in saturated granular media
[4, 5].

Contrary to a generalized Newtonian fluid, in which
viscosity and density do not change with depth, particles within
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Figure 1. E. directus digging cycle kinematics and energetics. Dashed line in (A)–(E) denotes a depth datum. White arrows indicate valve
movements. Red silhouette denotes valve geometry in expanded state, before contraction. (A) Extension of foot at initiation of digging cycle.
(B) Valve uplift. (C) Valve contraction, which pushes blood into the foot, expanding it to serve as a terminal anchor. (D) Retraction of foot
and downwards pull on the valves. (E) Valve expansion, reset for next digging cycle. (F) Energetic cost to reach burrow depth for E. directus
and a blunt body of the same size and shape as the animal pushed into static soil. Inset (a) shows the kinematics and energetics
corresponding to (A)–(E). E. directus data adapted from [8]. Blunt body data collected from 15 penetration tests in real E. directus habitat
off the coast of Gloucester, MA. Error bars denote ± STDEV.

a static granular material experience contact stresses, and thus
frictional forces, that scale with the surrounding pressure,
resulting in shear strength that increases linearly with depth [6].
This means that submerging devices such as anchors and piles
can be costly, as insertion force F(z), increases linearly with
depth z [7], resulting in an insertion energy, E = ∫

F(z) dz,
that scales with depth squared.

Ensis directus, the Atlantic razor clam, can produce a
force of approximately 10 N to pull its valves into soil [8].
Using measurements from a blunt body the size and shape
of E. directus pushed into the animal’s habitat substrate, we
determined that this much force should enable the clam to
submerge to approximately 1–2 cm [9]. But in reality, razor
clams dig to 70 cm [10]3, indicating that the animal must
manipulate surrounding soil to reduce burrowing drag and the
energy required for submersion.

3 Reference [10] relates the stout razor clam (T. plebeius); burrowing depths
on this order have also been observed by the authors while collecting
E. directus in Gloucester, MA.

E. directus burrows by using a series of valve and foot
motions to draw itself into underwater soils (figures 1(A)–
(E)). An upper bound of the mechanical energy associated with
advancing its valves downward can be estimated by adapting
results from Trueman [8], who measured the following
biomechanical parameters of E. directus digging in sand:
pulling forces between the valves and foot, valve contraction
angles, the pressure developed between the valves during
contraction, and the torsional stiffness of the valve ligament.
Summing the energies and kinematics associated with motion
of the valves during one burrow cycle yields: valve uplift
(0.05 J, −0.5 cm), valve contraction (0.07 J, 0 cm), and valve
penetration (0.20 J, 2.0 cm), combine for a total of 0.21 J cm−1

(with positive displacements relating to downwards progress
into the soil). Re-expansion of the valves is accomplished
through elastic rebound of the hinge ligament, and thus
requires no additional energy input by the animal. Comparing
this performance to the energy required to push an E. directus-
shaped blunt body to burrow depth in the animal’s habitat
substrate using steady downward force (figure 1(F)), we find

2
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Figure 2. Soil movement around burrowing E. directus. Horizontal
and vertical displacement fields from PIV data, δx and δy,
respectively, are plotted together as displacement magnitude,
non-dimensionalized by the initial radius of E. directus, RE . Data
are overlaid on original video frames used for PIV. The animal’s
body is masked from the data. The color bar spans 0.001–0.07.
(A) Completion of valve uplift and contraction (1.10 s after initiating
burrowing cycle), showing the fluidized zone proximate to the
animal’s body. (B) Moment when soil failure wedge fully forms,
occurring after retraction of foot and downward pull on valves
(5.07 s after initiating burrowing cycle). The predicted failure wedge
angle, θ f , is calculated from the substrate friction angle and is
shown with a white dashed line.

the animal is able to reduce its required burrowing energy
by an order of magnitude, even though there is an energetic
cost associated with pushing up and contracting its valves—
motions that do not directly contribute to downward progress.

We have found that the uplift and contraction motions
of E. directus’ valves during burrowing locally agitate the
soil (figure 2(A)) and create a region of fluidization around
the animal [9]. Moving through fluidized, rather than static,
soil reduces drag forces on the animal to within its strength
capabilities [9]. These fluidized substrates can, to first order,
be modeled as a generalized Newtonian fluid with depth-
independent density and viscosity that are functions of the
local packing fraction [11–16].

E. directus is an attractive candidate for biomimicry when
judged in engineering terms: its body is large (approximately
20 cm long, 3 cm wide); its shell is a rigid enclosure with
a one degree of freedom hinge; it can burrow over half a
kilometer using the energy in an AA battery [17]; it can dig
quickly, up to 1 cm s−1 [8], and it uses a purely kinematic
event to achieve localized fluidization, rather than requiring
additional water pumped into the soil. There are numerous
industrial applications that could benefit from a compact, low-
energy, reversible burrowing system, such as anchoring, subsea
cable installation, mine neutralization, and oil recovery. An
E. directus-based anchor should be able to provide more than
ten times the anchoring force per insertion energy as existing
products [18].

This paper presents the mechanics that govern localized
fluidization burrowing and experimental validation that
E. directus-inspired digging can be transferred to engineering
applications. Timescales and formation of the fluidized zone
are derived from soil, fluid, and solid mechanics theory.
This analysis indicates that localized fluidization burrowing
is possible in cohesive and granular soils, and that the
size of the fluidized zone can be predicted from commonly
measured geotechnical parameters. Using RoboClam, an
E. directus-inspired robot that learns to dig efficiently using
a genetic algorithm (GA), we demonstrate that a machine
can achieve comparable digging performance to the animal,
with borrowing energy scaling linearly with depth in an
idealized granular substrate and E. directus’ habitat—cohesive
mudflat soil. These experiments also validate the critical valve
contraction timescale to achieve fluidization, which can be
predicted from soil parameters.

2. Mechanics of localized fluidization burrowing

2.1. Initiating fluidization

The adage ‘clear as mud’ is often used to describe the difficulty
of visually investigating burrowing animals in situ. To explore
the soil mechanics at play during E. directus burrowing,
we constructed a 2D ant farm, or Hele-Shaw cell [19], to
see through the substrate surrounding a digging animal and
measure deformation of the granular medium with particle
image velocimetry (PIV) [9]. This work showed that the uplift
and contraction motions of E. directus’ valves agitate the
surrounding soil (figure 2(A)), creating a state of localized
fluidization. This event occurs at a faster timescale than that
required for the soil to naturally fail and landslide toward the
animal (figure 2(B)).

The discontinuity at the failure surface, shown by θ f

in figure 2(B), enables fluidization to occur—as the valves
contract beyond the point when incipient failure is induced
in the soil, the particles in the failure zone are free to move
with the pore fluid while the particles outside the failure zone
remain stationary. The relevant Reynolds number of the pore
fluid flow, Re = ρ f vvdp

μ f
, calculated from E. directus’ valve

velocity vv (determined from the valve contraction angular
velocity and valve width), particle diameter dp, and the pore
fluid density ρ f and viscosity μ f , varies between 0.02 and 56,

3
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depending on particle size (0.002–2 mm [6, 8, 10]), animal
size (10–20 cm, from experimental observation), and valve
contraction velocity (vv ≈ 0.011–0.028 m s−1 [8]). As this
range of Reynolds numbers falls primarily within the regime
of Stokes drag (the transition to form drag occurs at a Reynolds
number of approximately 100) [20], the characteristic time for
a particle to reach the pore fluid velocity can be estimated
through conservation of momentum:

mp
dvp

dt
= 6πμ f dp(vv − vp) → tchar = dp

2ρp

36μ f
, (1)

where mp is the mass of a soil particle, dvp

dt is the acceleration
of the particle, and ρp is the density of the particle. For the
1 mm soda lime glass beads used in our experiments, tchar =
0.075 s. This timescale is considerably less than the ≈ 0.2 s
valve contraction time measured by Trueman [8], indicating
that soil particles surrounding E. directus can be considered
inertialess and are advected with the pore fluid during valve
contraction.

The discontinuity created by the failure surface is critical
to achieving fluidization, as without it substrate particles
would follow the fluid flow field, which is incompressible and
governed by ∇·v = 0. No divergence in the flow field creates
no divergence between particles, and thus no unpacking.
However, in the presence of a finite failure zone, E. directus’
contraction motion reduces the volume between the valves,
which draws pore water into the region surrounding the animal.
This pore water mixes with the failed soil to create a locally
unpacked, fluidized zone.

2.2. Localized substrate failure during valve contraction

The previous subsection relates to our measurements of
E. directus in a two-dimensional experimental setup; the
following discussion is focused on describing the mechanics
that govern how the failure, and fluidized, zone forms around
the animal in three dimensions.

As E. directus initiates contraction of its valves, it
reduces the level of stress acting between the valves and the
surrounding substrate, causing failure in the soil. Figure 3(A)
shows a Mohr’s circle representation [21] of the effective stress
states at equilibrium, before contraction (circle a), and during
the initiation of contraction, which brings the soil to one of two
states of active failure, caused either by an imbalance between
radial and vertical stresses (circle b), or an imbalance between
radial and hoop stresses (circle c). Effective stress is the actual
stress acting between soil particles, neglecting hydrostatic
pressure of the pore fluid, and is denoted in this paper with a
prime. The term ‘active’ corresponds to the reduction (rather
than increase) of one of the principal stresses to induce
failure [6].

As the soil begins to fail, it will tend to naturally landslide
downward at a failure angle θ f . At this point, the shear stresses
in the soil are equal to its shear strength. This condition is
shown in figure 3(A), with the applied stress circles b and c
tangent to the failure envelope, which lies at the same angle
as the friction angle of the soil ϕ, a property commonly
measured during a geotechnical survey. The failure angle is
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Figure 3. Soil failure mechanisms around burrowing E. directus in
3D. (A) Mohr’s circle showing stress states at equilibrium (a),
failure due to radial–vertical stress imbalance (b), and failure due to
radial–hoop stress imbalance (c). Labels: τ is shear stress; σ is
normal stress; ϕ is the soil’s friction angle; θ f is the predicted failure
angle; superscript ′ denotes effective stress, the actual stress between
substrate particles without the contribution of pore water hydrostatic
pressure; subscript r denotes radial direction; subscript v denotes
vertical direction; subscript θ denotes hoop direction; subscript 0
indicates equilibrium state; and subscript f indicates failure state.
(B) Schematic of the failure zone in soil around contracting
E. directus. Labels: p0 is equilibrium lateral soil pressure; pi is the
soil pressure acting on the animal’s valves; r, z, and θ denote the
cylindrical coordinate system; h is E. directus’ depth in the
substrate; L and R0 are the animal’s length and expanded radius,
respectively; and Rf is the radius of the failure zone.

the transformation angle between the principal stress state and
the stress state at failure. This angle can also be determined
by connecting the tangency point on the failure envelope, the
horizontal effective stress at failure σ ′

h f , and the principal stress
axis (figure 3(A)), and is given by

θ f = π

4
+ ϕ

2
. (2)

4
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Equation (2) was used to plot the failure angle in figure 2(B),
with the friction angle of the substrate measured as 25◦.

To describe soil failure in three dimensions, we propose a
simplified model of E. directus as a cylinder with contracting
radius that is embedded in saturated soil (figure 3(B)). To
neglect end effects, the length of the cylinder is considered
to be much larger than its radius. When E. directus initiates
valve contraction, it induces incipient failure without moving
the substrate particles; as this relaxation in pressure can
be considered quasi-static and elastic [6], stresses due to
inertial effects can be ignored and the total radial and hoop
stress distribution in the substrate can be described with
the following thick-walled pressure vessel equations [22],
which have been modified to geotechnical conventions (with
compressive stresses positive) and to reflect an infinite soil bed
in lateral directions:

σr = R2
0(pi − p0)

r2
+ p0 (3)

σθ = −R2
0(pi − p0)

r2
+ p0, (4)

where σr is total radial stress, σθ is total hoop stress, R0 is
E. directus’ expanded radius (before contraction), pi is the
pressure acting on the animal’s valves, and p0 is the natural
lateral equilibrium pressure in the soil. It is important to note
that these equations still hold if there is a body force acting in
the z-direction, such as in soil. In this case, the pressure vessel
equations describe the state of stress within annular differential
elements stacked in the z-direction. The total vertical stress is
given as

σz = ρtgh, (5)

where h is the clam’s depth beneath the surface of the soil, ρt is
the total density of the substrate (including solids and fluids),
and g is the gravitational constant. It should be noted that there
are no shear stresses within the soil in principal orientation,
as τrz = τθz = 0 because E. directus is modeled with a high
aspect ratio (L � R0) and τrθ = 0 because of symmetrical
radial contraction.

The undisturbed horizontal effective stress in the substrate
is determined by subtracting hydrostatic pore pressure u from
the natural lateral equilibrium pressure:

σ ′
h0 = p0 − u. (6)

The undisturbed horizontal and vertical effective stresses can
be correlated through the coefficient of lateral earth pressure

K0 = σ ′
h0

σ ′
v0

, (7)

which is a soil property that can be measured through
geotechnical surveys [6, 23]. By also knowing the void fraction
of the soil ε and the particle and fluid density, ρp and ρ f

respectively, p0 can be determined as

p0 = K0σ
′
v0 + u = K0gh(1 − ε)(ρp − ρ f ) + ρ f gh. (8)

Failure of the substrate will occur when pi is lowered to a
point where the imbalance of two principal effective stresses
produces a resolved shear stress that equals the shear strength
of the soil. This resolved failure shear stress can be created by

an imbalance between radial and vertical stresses (figure 3(A),
circle b) or radial and hoop stresses (figure 3(A), circle c).
From the geometry of either circle and the failure envelope
defined by ϕ, the relationship between stresses at failure for
either mechanism is

σ ′
r f

σ ′
v f

= σ ′
r f

σ ′
θ f

= 1 − sin ϕ

1 + sin ϕ
= Ka, (9)

where the subscript f denotes the stresses at failure and Ka is
referred to as the coefficient of active failure. It is important
to note that this failure analysis is also valid for cohesive
soils. The difference between cohesive and granular soils when
plotted on a Mohr’s circle is that the failure envelope does not
pass through (0,0), as cohesive stresses give soil shear strength
even when no compressive stresses are applied. At sufficient
depths the failure envelope can be approximated as running
through (0,0) for any soil type, as compressive stresses due to
gravity will dominate cohesive stresses.

Soil failure due to an imbalance between radial and
vertical stresses will occur when the applied radial effective
stress equals the radial stress at failure. The radial location
of the failure surface in this condition, R frv , can be found
by combining (3) for radial stress with (6), (7), and (9),
and realizing that the vertical effective stress at failure and
equilibrium is unchanged, namely

σ ′
r

∣∣
r=R frv

= σ ′
r f

R2
0(pi − p0)

R2
frv

+ p0 − u = Ka

K0
(p0 − u)

yielding the dimensionless radius for radial–vertical stress
imbalance-induced failure:

R frv

R0
=

[
pi − p0(Ka

K0
− 1

)
(p0 − u)

] 1
2

. (10)

If soil failure is caused by an imbalance between radial
and hoop stresses, the radial location of the failure surface,
R frθ , can be found by combining (3) and (4) with (6) and (9):

σ ′
r

∣∣
r=R frθ

= σ ′
r f

R2
0(pi − p0)

R2
frθ

+ p0 − u = Ka

[
−R2

0(pi − p0)

R2
frθ

+ p0 − u

]

yielding the dimensionless radius for radial–hoop stress
imbalance-induced failure:

R frθ

R0
=

[
(Ka + 1)(pi − p0)

(Ka − 1)(p0 − u)

] 1
2

. (11)

The dominant failure mechanism in the soil surrounding
a contracting cylindrical body is determined by the type
of failure (radial–vertical or radial–hoop) that results in the
largest failure surface radius. The ratio of failure radii for both
mechanisms can be calculated by combining (10) and (11) into

R frv

R frθ

=
[

Ka − 1

(Ka + 1)
(Ka

K0
− 1

)
] 1

2

. (12)

Figure 4(A) shows values of (12) for the full range of
possible soil types, with 0.19 � Ka � 0.52 and 0.31 � K0 � 1

5
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Figure 4. Size of soil failure zone around contracting E. directus. (A) Ratio of predicted failure zone radii due to radial–vertical stress
imbalance, Rfrz , and radial–hoop stress imbalance, Rfrz . Dashed line shows

R frz
R frz

= 1. (B) Generalized failure radius, Rf , non-dimensionalized

by E. directus’ radius, R0, predicted using equation (13). Both (A) and (B) are plotted for all possible soil types, characterized by coefficient
of lateral earth pressure, K0, and coefficient of active failure, Ka. Imaginary regions in both plots correspond to impossible stress states,
where the soil is not strong enough to carry such a large imbalance between horizontal and vertical stresses.

[6, 23]. For the region of radial–hoop stress-dominated failure
(above the dashed line in figure 4(A)), R frv

R frθ
≈ 1, indicating that

the failure radius from both mechanisms is approximately the
same size. For the region of radial–vertical stress-dominated
failure (below the dashed line in figure 4(A)), R frv

R frθ
> 1 and

rapidly rises to an asymptote for lower values of K0 and higher
values of Ka. The asymptote and the imaginary region in

figure 4(A) correspond to natural stress imbalances that exceed
the shear strength of the soil and are thus impossible. Since
R frv � R frθ , radial–vertical stress imbalance-induced failure is
considered the dominant mechanism and is used to predict the
failure zone size from the following scaling arguments.

If during contraction pi is assumed to be approximately
zero, corresponding to complete stress release between

6
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Figure 5. Anatomy of the RoboClam. (A) RoboClam burrowing in E. directus habitat on a mudflat in Gloucester, MA. Dashed line box
shows location of the end effector. The in-out piston (IOP) and up-down piston (UDP) control in-out and up-down motions of the end
effector, respectively. The robot runs on compressed air from a scuba tank (ST), regulated by pressure control valves (PCV). Measurement
and control is accomplished by a laptop housed in the control system case (CSC). (B)–(F) Motions of the end effector while burrowing,
which replicate E. directus’ valve motions (figures 1(A)–(E)). Dashed line indicates depth datum. Shaded areas show regions of anticipated
localized fluidization. (G) Sectioned view of the end effector mechanism. The inner rod (IR) actuates in-out motion and the outer rod (OR)
actuates up-down motion of the end effector. The top nut (TN) vertically constrains the two valves (V). The neoprene boot (NB) prevents
soil particles from jamming the mechanism. The wedge (W) slides up and down to force the valves in and out. The leading tip (LT) bears the
majority of abrasive forces from downwards motion instead of the boot. (H) Exploded view of the end effector showing contact points
between the wedge, valves, and top nut, which provide six constraints (green arrows) to exactly constrain the mechanism.

E. directus’ valves and the surrounding soil, and u ≈ 0.5p0

because of the relative densities and volumetric fractions of
the soil particles and interstitial water, (10) reduces to

R f

R0
≈

(
2

1 − Ka
K0

) 1
2

. (13)

This facilitates a prediction of R f using only two soil
properties, Ka and K0, both of which are commonly measured
during a geotechnical survey [24].

Applying the range of possible Ka and K0 values to
(13) yields 1 <

R f

R0
< 5 in most conditions (figure 4(B)).

These results demonstrate that soil failure around a contracting
cylindrical body is a relatively local effect, and for reductions
of pi to near zero, depth-independent. Equation (13) also does
not depend on any soil cohesion terms, indicating that localized
substrate failure and fluidization should be possible in both
granular and cohesive soils.

3. Materials and methods

3.1. Design of RoboClam

To explore the transfer of localized fluidization burrowing to
engineering applications, we designed and built RoboClam,

a robot that replicates the digging kinematics of E. directus
(figure 5(A)). The robot consists of a control platform with
two pneumatic pistons that actuate an end effector in the same
up-in-down-out motions as E. directus’ valves (figures 5(B)–
(F)). The end effector is the same size scale as E. directus
(9.97 cm long and 1.52 cm wide) and is capable of the
same contraction displacement of an adult animal (∼6.4 mm).
Unlike E. directus, which uses its foot—a soft, dexterous
organ—to move its valves up and down, RoboClam uses a
simpler mechanical arrangement to actuate the end effector
up and down with a pneumatic piston, which is capable of a
much longer stroke than the animal’s foot. Pneumatics were
chosen as the main power source so RoboClam can be safely
tested in real, undisturbed ocean substrates, which enables
accurate comparisons to E. directus performance and mitigates
container wall effects.

The end effector is sealed within a rubber boot to prevent
soil particles from jamming the valve expansion/contraction
mechanism (figure 5(G)). Displacement of the mechanism is
accomplished with a sliding wedge that moves the two valves
of the end effector in and out. The wedge and valves are exactly
constrained (figure 5(H)), with contact lengths/widths greater
than two in order to prohibit jamming during any part of the
stroke [25]. The wedge was designed to intersect the center
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Figure 6. RoboClam burrowing data from ocean mudflat testing in Gloucester, MA. (A) Minimum value of costocean for each generation of
the genetic algorithm controlling RoboClam (125 individual tests). Point B corresponds to the lowest cost test with α ≈ 1, where α is the
power law relationship between burrowing energy and depth. (B) Test data from point B in (A), with digging data from RoboClam. Pushing
data is from the E. directus-shaped blunt body in figure 1, taken at the same location. Inset (a) commands for actuation pressure and duration
given to the robot during the test. Inset (b) applied downward force versus depth for RoboClam digging and blunt body pushing.

of pressure of the valves regardless of its position, assuming
the center of pressure is located approximately at the center
of the valves. The geometry and exact constraint of the end
effector mechanism allow its efficiency to be characterized by
measuring the coefficient of friction between the wedge and
valves, which was found to be 39% [26].

As RoboClam burrows, the control system tracks the total
amount of energy input to the system by integrating the forces
acting on the pneumatic actuators over their displacement.
Because we were able to characterize the frictional losses in the
end effector and the actuators, as well as account for potential
energy changes, the energy expended for soil deformation
while burrowing could be tracked [26]. This is an important
facet of the machine’s design, as overall energy consumed
is device-dependent; the purpose of creating RoboClam was
to test the new method of using a machine to burrow via
localized fluidization. After the method is understood and
characterized, other burrowing machines can be designed for
optimized efficiency.

3.2. RoboClam testing

RoboClam is controlled using a GA. The control space
for the robot is composed of eight independent parameters:
up/in/down/out pneumatic pressure and the time or
displacement associated with each motion. A GA was
used because it can handle many independent variables
in an optimization problem. The random mutation and
recombination of traits used by a GA may allow it to
find a global minimum, even in situations in which other
optimization methods would not [27]. During the ocean tests
reported in this work, MATLAB’s4 built-in GA was used,
with a population of 10–20 individuals running for 10–20
generations. In laboratory tests reported, RoboClam ran from
customized GA software written in Python5.

4 Matlab. The Math Works. 3 Apple Hill Drive, Natick, MA 01760-2098.
www.mathworks.com/
5 Python Programming Language—Official Website. Python.
www.python.org/
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Figure 7. RoboClam testing in 1 mm soda lime glass beads. (A) Power law relationship α between burrowing energy and depth, dependent
on actual contraction and expansion times of the end effector. Digging tests run with only in/out actuation of the end effector, with the robot
falling under its own weight. Values of α ≈ 1 denote burrowing via localized fluidization; values of α ≈ 2 indicate no fluidization and static
soil. Black dots are tests where burrowing depth was less than one body length and deemed unsuccessful. Critical contraction time to
achieve fluidization, tcrit, matches the advection time for particles to reach pore fluid flow velocity during contraction, determined by (1).
Data from 362 individual tests collected during 18 trials. (B) RoboClam digging test with lowest α from (A), compared against the end
effector pushed into static substrate without actuating the in/out motion. Inset (a) commands for in/out actuation pressure and time given to
the robot during the test. Inset (b) applied downward force versus depth for RoboClam digging versus pushing.

A GA is analogous to evolution in nature [27]. In the case
of RoboClam, the GA begins a test by randomly generating
a population of individuals, where each individual is a set of
instructions (movement times/displacements and pressures) to
run the machine. The GA runs the robot with each individual
and records its digging performance. Individuals are then
compared by a metric to be optimized—a ‘cost’ function that
relates to digging efficiency for RoboClam. Individuals in the
population with the lowest cost are allowed to interbreed (mix
parameters) with each other, high-cost individuals are killed
off, and new individuals are added to the population to form
the next generation. The process repeats for many generations,

ideally continually decreasing the cost to a global minimum,
which appears as a cost asymptote.

In quantifying optimized burrowing efficiency, two factors
are relevant: the overall energy expenditure per depth of the
robot β, where E

δ
= β; and the power law relationship α

between energy expended and depth, where α = ln E
ln δ

with the
energy-depth data centered about (0, 0). Fluidized soil exhibits
α = 1, whereas static soil exhibits α = 2. The cost function
used for the first set of tests reported in this work (figure 6)
was

costocean = βα. (14)
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These tests were conducted in real E. directus habitat off the
coast of Gloucester, MA. One hundred and twenty five tests
were run during the trial, representing 13 generations of the GA
(with the final generation incomplete). The controlled digging
parameters were up and down time, in and out displacement,
and the pressures associated with each movement. The robot
was moved to a new location for each test, greater than
ten characteristic lengths away from the previous test, as to
maintain virgin soil conditions.

We found that low values of β resulted in low-energy
burrowing for depths of 20–30 cm, but with relatively high
α (≈ 2, indicating non-fluidized substrate). At greater depths
these burrowing techniques would not provide any energetic
advantage over existing techniques used to penetrate static soil
[7]. As a result, the cost function used for the second set of
data reported in this work (figure 7) was

costlab = α, (15)

as α ≈ 1 demonstrates localized fluidization—the aim of
our experiments. These tests were conducted in 1 mm soda
lime glass beads saturated with water, the same substrate used
in our visualization experiments of E. directus. The beads
were contained in a 0.125 m3 (33 gallon) steel drum with the
robot mounted on top. The diameter of the drum was greater
than 10X the width of the end effector. Three hundred and
seventy one individual tests, constituting ten separate trials,
were performed with this setup and are reported in this work.

4. Results and discussion

Figure 6(A) shows how RoboClam evolved toward improved
digging performance in the ocean mudflat through each
generation of the GA, with costocean hitting a plateau for latter
tests. Point B corresponds to the test parameters given in
figure 6(B), which was the lowest cost test of the trial that
had α ≈ 1; values of costocean in figure 6(A) that are slightly
lower than point B correspond to tests where β was low
but α ≈ 2, indicating no localized fluidization. The power
law relationship between energy and depth in figure 6(B)
shows that RoboClam achieved localized fluidization by using
E. directus burrowing motions (inset a), which also resulted in
a nearly constant downward force (inset b); in contrast, simply
pushing into the soil yields α ≈ 2 and an increasing drag force
with depth, indicating no localized fluidization.

From our testing in 1 mm soda lime glass beads, we found
that burrowing was most sensitive to the in/out motions of the
end effector and that the robot could successfully dig without
actively moving up and down. Figure 7(B) shows the lowest
cost test from figure 7(A), with α = 1.00, indicating localized
fluidization. The GA parameters in this test are representative
of all those in figure 7(A), correspond to RoboClam using only
in/out motions (figure 7(B), inset a) and falling under its own
weight (24.5 N) (figure 7(B), inset b).

Figure 7(A) shows a sensitivity to the inward contraction
timescale, with tests that achieved localized fluidization
(α ≈ 1) occurring at a contraction time � 0.075 s.
Unsuccessful tests, where the end effector did not advance
at least one body length (black dots) or where α ≈ 2,

corresponded to contraction times <0.075 s. The critical
contraction time of tcrit = 0.075 s matches the characteristic
time required for 1 mm soda lime glass particles to advect
with the pore fluid during valve contraction (1), meaning
contraction times faster than tcrit did not give the particles
enough time to move and fluidize. The vertical spread in the
data in figure 7(A) shows no dependence on expansion time
within the timescales measured, although at longer timescales
the settling time of the particles would affect the end effector’s
ability to reopen. Reported times in figure 7(A) are the actual
times the end effector was moving, not the times the pneumatic
actuators were energized.

In both figure 6(B) and figure 7(B), the absolute amount
of energy used to dig via localized fluidization is higher than
simply pushing into the soil, even though the change in energy
with change in depth is lower. The most likely cause of this
behavior is the fact that at shallow depths, the energy required
to open and close the valves of the end effector will be larger
than the energy required to penetrate the soil. This effect is
also apparent for burrowing E. directus compared to pushing
an E. directus-shaped blunt body into static soil (figure 1(F)).

5. Conclusion

The results of this work demonstrate that localized fluidization
burrowing is possible in both cohesive and granular soils and
should not be limited by size scale. The critical contraction
timescale necessary to achieve localized fluidization (1) and
the size of the fluidized zone (13) can be determined through
soil parameters gathered through standard geotechnical
surveys. The theory presented in this paper forms a framework
upon which localized fluidization burrowing machines can
be designed for a variety of soil types and engineering
applications.
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