2,264 research outputs found
Ignition and combustion of lunar propellants
The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20 micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 weight percent Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed which employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times. For the particles investigated, the contribution of heterogeneous reaction to the heating of the particle is found to be significant at lower temperatures, but may be neglected as gas temperatures above 3000 K. As little as 10 percent Mg reduces the ignition delay time substantially at all pressures tested. The particle ignition delay times decrease with increasing Mg content, and this reduction becomes less pronounced as oxidizer temperature and pressure are increased
3.4. The Development of the PaleoWay Digital Workflows in the Context of Archaeological Consulting
PaleoWest Archaeology began to develop technology and methods for digital data collection in 2010, and quickly became the first archaeological consulting firm in the United State to adopt an all-digital workflow. The initial phase of research and development of this workflow coincided with a period of rapid software and hardware development, most notably the launch of the first- and second-generation iPads. The digital archaeological toolkit we assembled was used to collect survey data from tens of thousands of acres, document thousands of isolated artifacts, and record hundreds of archaeological sites throughout the American Southwest and elsewhere. This experience informed a second phase of development in which a custom database was constructed using FileMaker Pro. Ultimately, we developed a number of all-digital workflows that we refer to collectively as the PaleoWay. The development of this workflow has allowed us to collect better-quality data while becoming more efficient in our field and reporting operations.https://dc.uwm.edu/arthist_mobilizingthepast/1016/thumbnail.jp
Air Force Information Management (IM): A 1993 Snapshot of Current and Projected Roles of Enlisted Information Managers
This study provides a preliminary view of the level of familiarity enlisted information managers have of changing roles, responsibilities, and initiatives within the Information Management career field. Using a three-phase investigative methodology that combined e-mail, interviews, and mail surveys, the authors addressed the changing roles and responsibilities of enlisted information managers and their familiarity with these changes. This study found that although individuals agree that the role is changing and expanding, many are performing the traditional administrative taskings. The lower ranks still perceive themselves as clerks, whereas senior enlisted members consider themselves managers. Although the career field name changed to Information Management, the supporting attitude has not. The greatest changes of responsibility focus on the use of new automated tools. From the results of our survey it is apparent that enlisted members in the field are not familiar with concepts and initiatives which are being projected as future responsibilities. Knowledge level tends to increase as rank increases, but this familiarity-level is attributed primarily to personal research. Respondents perceived on-the-job training to be the most appropriate training method for teaching future concepts. The major recommendation from this research is to increase the level of communication to career field members. Another recommendation focuses on the need to provide additional training to the NCO ranks in particular. Individuals would benefit from the development of other educational avenues besides Air Force technical training, such as courses at AFIT or through the Community College of the Air Force
Synthesis and characterization of carbon catalyst substrates for fuel cell applications
The work in this thesis addresses the synthesis and characterization of porous carbon substrates, and their electrochemical and fuel cell evaluation. The approach involves using porous carbon materials of different pore characteristics as electrocatalyst materials for use as cathode catalyst substrates in direct methanol fuel cells (DMFC). In this work, a porous carbon, known as carbonaceous Celatom or C-Celatom, was prepared by template synthesis using a widely abundant, inexpensive macroporous silica structure diatomaceous earth (Celatom FW-80). Ordered mesoporous carbon CMK-3 was also produced by template synthesis of mesoporous silica SBA-15. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to confirm the synthesis of the desired carbon structures. Three different platinum deposition techniques were investigated for electrocatalyst synthesis, an incipient wetness technique, as ethylene glycol reduction technique, and an alkoxide reduction technique. Transmission electron microscopy (TEM) and SEM analysis of the catalysts formed using the incipient wetness and ethylene glycol techniques showed that the synthesized catalysts were not suitable for fuel cell use. Optimization of the alkoxide reduction technique resulted in a deposition technique that resulted in a well-dispersed catalyst with small, uniform particle sizes (2.1-3.1 nm). The synthesized electrocatalysts were evaluated electrochemically and found to have high electrochemically active surface areas (ESA) of 33.38 m2 g-1 for Pt/Vulcan XC-72, 22.45 m2 g-1 for Pt/CMK-3 and 20.51 m2 g-1 for Pt/C-Celatom. The oxygen reduction (ORR) activity was evaluated by linear sweep voltammetry(LSV). The Pt/C-Celatom exhibited the greatest activity towards the oxygen reduction reaction, and the greatest number of active sites for the ORR. Assessment of the material by electrochemical impedance spectroscopy (EIS) also showed that an MEA with C-Celatom as the cathode catalyst has the lowest combines charge transfer and mass transport resistance. Single cell DMFC testing was carried out with each of the experimental substrates. The synthesized catalysts demonstrated high performance over a range of temperatures and feed molarity concentrations. The C-Celatom MEA exhibited the greatest power output of the synthesized catalysts for low molarity operation, with peak power densities of 25.8 and 32.6 mW cm-2 with 0.5M and 1M feed respectively.EThOS - Electronic Theses Online ServiceNorth American Foundation for the University of ManchesterGBUnited Kingdo
Desert RHex Technical Report: Jornada and White Sands Trip
Researchers in a variety of fields, including aeolian science, biology, and environmental science, have already made use of stationary and mobile remote sensing equipment to increase their variety of data collection opportunities. However, due to mobility challenges, remote sensing opportunities relevant to desert environments and in particular dune fields have been limited to stationary equipment. We describe here an investigative trip to two well-studied experimental deserts in New Mexico with D-RHex, a mobile remote sensing platform oriented towards desert research. D-RHex is the latest iteration of the RHex family of robots, which are six-legged, biologically inspired, small (10kg) platforms with good mobility in a variety of rough terrains, including on inclines and over obstacles of higher than robot hip height.
For more information: Kod*La
International business: past, present and futures
This article provides the context for futures thinking in the field of international business (IB). The article begins by considering the nature of IB. Its historical development is then elaborated, before its current significance and trends are considered. Building on the review of past and present we speculate briefly on the possible futures of IB. In so doing, we provide a basis from which the contributions to this Special Issue on the Futures of IB can be understood and situated in a broader context
Robotic Measurement of Aeolian Processes
Measurements used to study wind shear stress and turbulence, surface roughness, sand flux, and dust emissions are typically obtained from stationary instrumentation, and are thus limited spatially. They are also dependent on deployment of instrumentation for specific events and thus the are limited temporally. We have been adapting a rough-terrain legged robot capable of rapidly traversing desert terrain to serve as a semi-autonomous, reactive mobile sensory platform (RHex [1]), which would not share these limitations. We report on early trials of the robotic platform at the Jornada LTER and White Sands National Monument to test the feasibility of gathering measurements of airflow and rates of particle transport on a dune, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in an arid soil. The robot not only serves as a mobile platform for science instruments; it can also perform controlled “kick tests” to locally examine soil strength. We outline a strategy for mapping soil erodibility and its controlling parameters using the unique capabilities of RHex, and the implications for understanding erosion and dust emission from complex terrain
Signs of a vector's adaptive choice: on the evasion of infectious hosts and parasite-induced mortality
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue.
We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies.
Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high.
The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions
Ground robotic measurement of aeolian processes
Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists’ efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself.
For more information: Kod*lab (http://kodlab.seas.upenn.edu/
- …