7,554 research outputs found

    The Inflation Technique for Causal Inference with Latent Variables

    Full text link
    The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique\textit{inflation technique} for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution's incompatibility with the causal structure (of which Bell inequalities and Pearl's instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.Comment: Minor final corrections, updated to match the published version as closely as possibl

    An Orbital Stability Study of the Proposed Companions of SW Lyncis

    Get PDF
    We have investigated the dynamical stability of the proposed companions orbiting the Algol type short-period eclipsing binary SW Lyncis (Kim et al. 2010). The two candidate companions are of stellar to sub-stellar nature, and were inferred from timing measurements of the system's primary and secondary eclipses. We applied well-tested numerical techniques to accurately integrate the orbits of the two companions and to test for chaotic dynamical behaviour. We carried out the stability analysis within a systematic parameter survey varying both the geometries and orientation of the orbits of the companions, as well as their masses. In all our numerical integrations we found that the proposed SW Lyn multi-body system is highly unstable on time-scales on the order of 1000 years. Our results cast doubt on the interpretation that the timing variations are caused by two companions. This work demonstrates that a straightforward dynamical analysis can help to test whether a best-fit companion-based model is a physically viable explanation for measured eclipse timing variations. We conclude that dynamical considerations reveal that the propsed SW Lyncis multi-body system most likely does not exist or the companions have significantly different orbital properties as conjectured in Kim et al. (2010).Comment: 9 pages, 6 figures, 2 tables. Submitted to and accepted by JASS -- Journal for Astronomy and Space Sciences (using JKAS LaTeX style file

    Catholic Glasnot - By All Means

    Full text link

    A Report on Our Eight Years With the Church in Europe

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1283/thumbnail.jp
    corecore