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We have investigated the dynamical stability of the proposed companions orbiting the Algol type short-period eclipsing 
binary SW Lyncis (Kim et al. 2010). The two candidate companions are of stellar to substellar nature, and were inferred 
from timing measurements of the system’s primary and secondary eclipses. We applied well-tested numerical techniques to 
accurately integrate the orbits of the two companions and to test for chaotic dynamical behavior. We carried out the stability 
analysis within a systematic parameter survey varying both the geometries and orientation of the orbits of the companions, 
as well as their masses. In all our numerical integrations we found that the proposed SW Lyn multi-body system is highly 
unstable on time-scales on the order of 1000 years. Our results cast doubt on the interpretation that the timing variations 
are caused by two companions. This work demonstrates that a straightforward dynamical analysis can help to test whether 
a best-fit companion-based model is a physically viable explanation for measured eclipse timing variations. We conclude 
that dynamical considerations reveal that the proposed SW Lyncis multi-body system most likely does not exist or the 
companions have significantly different orbital properties from those conjectured in Kim et al. (2010).
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1. INTRODUCTION

In recent years, a number of multiple star systems 

have been proposed to orbit a binary pair as a result of 

photometric follow-up observations of eclipsing binaries. 

The nature of the proposed companions ranges from 

planetary to sub-stellar objects. Lee et al. (2009) were the 

first to propose such circumbinary companions to explain 

eclipse timing variations, suggesting that the short-period 

pulsating subdwarf binary HW Virginis (hereafter HW 

Vir) was being accompanied by two unseen circumbinary 

companions of mass 8.5 M
jup

 and 19.2 M
jup

. Following 

this announcement, Beuermann et al. (2010) announced 

the detection of two planets with masses of 2 M
jup

 and 7 

M
jup

orbiting the recently formed post-common envelope 

binary NN Serpentis (hereafter NN Ser). Qian et al. (2011) 

then also announced the discovery of two circumbinary 

companions orbiting the eclipsing polar HU Aquarii 

(hereafter HU Aqr) using the same detection technique. 

Furthermore, Potter et al. (2011) announced a possible 

detection of two giant extrasolar planets orbiting the 

eclipsing polar UZ Fornacis (hereafter UZ For) and Lee 

et al. (2012) found periodic signatures from photometric 

measurements of the Algol system SZ Herculis (hereafter 

SZ Her). Here, the authors associated their detection with 

the possible existence of two M-type stellar companions 

with minimum massess of 0.19 M
⊙

 and 0.22 M
⊙

. Finally, 

a recent study by Almeida et al. (2013) also proposed the 

existence of two circumbinary companions orbiting the 

post-common envelope binary NSVS 14256825. In addition 

to these proposed systems, a number of studies (Kim et al. 

(2005)) proposed unseen companions around several other 

close binaries in the last few years and we refer to Hinse et 

al. (2014a, and references therein) for further details of these 
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systems.

The observational technique which is used for the 

discovery of possible circumbinary companions is primarily 

based on the timing measurements of the primary eclipse 

of the binary star system. Considering the case when the 

primary is isolated and positioned at a constant distance 

to Earth, the time of primary eclipses in the future will 

follow a linear ephemeris relative from some reference 

epoch T
0
 with binary period P

0
. However, if an additional 

massive companion is gravitationally bound to the binary 

components, then the binary system will start to follow an 

orbital trajectory around the total system barycenter. This 

gives rise to the so-called light-travel time effect (LTTE) 

(Irwin 1952, Borkovits & Hegedues 1996). As a consequence 

of the finite speed of light, the arrival-time of photons will 

be delayed (advanced) as a result of the distance between 

the binary and the Earth being a maximum (minimum). The 

manifestation of this effect is a quasi-periodic change in the 

measured timings of the primary eclipses and is also known 

as eclipse timing variations (ETV). The precision with which 

timing measurements are obtained is mainly governed by 

the photometric quality of the data, the observing cadence 

during the eclipse, and the presence of star-spots. In 

general, timing measurements should be independent of 

spectral band observations although datasets with mixed 

timing measurements obtained from various filters could 

result in systematics uncertainties and possibly lead to a 

false interpretation of the period variations of an eclipsing 

binary (Go´zdziewski et al. 2012).

For nearly all systems with a proposed circumbinary 

companion, as mentioned above, there is a fundamental 

p r o b l e m  t h a t  r a i s e s  d o u b t s  t o w a r d s  t h e  c o r r e c t 

interpretation of the measured eclipse timing variations. 

A common denominator for all systems is the three-body 

problem: two massive companions orbiting a binary star. 

From a dynamical point of view, such configurations 

naturally raise the question of orbital stability. The 

numerical demonstration of a long-lived stable three-body 

system could serve to further support the interpretation 

of observed timing variations as being directly caused by 

the perturbing effects of massive companions. One other 

possibility is that the period variations are indeed caused 

by additional companions, but in this case the orbital 

architecture must be significantly different than discussed.

As an example the only multi-body system that seem 

to follow stable orbits around a post-common envelope 

(evolved) binary is the NN Ser system (Beuermann et al. 

2010, Horner et al. 2012a, Beuermann et al. 2013). Recently 

the planetary interpretation of the primary eclipse times of 

NN Ser was further supported by timing measurements of 

the secondary eclipses. Parsons et al. (2014) were able to 

rule out the possibility of apsidal motion of the orbit of NN 

Ser showing that the secondary eclipse timings followed 

the same trend as the primary timing measurements. 

Furthermore, a stable multi-body circumbinary system 

was recently detected using Kepler space-telescope data. 

Orosz et al. (2012) utilized the transit detection technique 

to detect two planets transiting a main-sequence primary 

star very similar to the Sun accompanied by a cooler M-type 

secondary.

In contrast to the stability and feasibility demonstrated 

for the two systems discussed in the previous paragraph, 

dynamical studies of the other circumbinary systems 

discussed above have instead revealed a very different 

picture. Rather than featuring proposed companions that 

move on dynamically stable orbits, the companions in 

those systems have instead been found to move on highly 

unstable orbits (with the exception of NN Ser). Typically, 

the companions will either experience close encounters 

resulting in the ejection of one or both components or there 

will be direct collision events. Several studies have recently 

focused on the orbital stability of the proposed circumbinary 

systems. The first study to test for the orbital longevity of 

any such post-common eclipsing binary system (HU Aqr) 

was presented in Horner et al. (2011). In their work they 

followed the orbits as part of a detailed dynamical analysis 

and demonstrated that the proposed two-planet system 

would be highly unstable, with break-up time-scales of less 

than a few thousand years. Two follow-up studies of HU Aqr 

were recently presented (Hinse et al. 2012a, Wittenmyer 

et al. 2012). In the first, where the authors attempted to 

determine new best-fit models to the observed timing data 

accompanied with orbital stability requirements.

In that work, the authors found a new orbital architecture 

for the proposed companions around HU Aqr, but again 

found that architecture to be highly unstable. Long-lived 

orbits capable of surviving on million-year timescales 

were found for HU Aqr only when additional orbital 

stability constraints were imposed on an ensemble of 

best-fit solutions, based on the Hill radii of the proposed 

companions. The key difference between the stable 

solutions found in this manner and the unstable ones that 

resulted solely from the observational data was that the 

stable solutions featured near-circular orbits for the two 

companions. Two further studies of the HU Aqr system 

(Go´zdziewski et al. 2012, Wittenmyer et al. 2012) both 

suggested that two-companion solutions could be ruled 

out for the system, with Go´zdziewski et al. (2012) pointing 

towards an alternative, single companion model providing 

the best explanation of the measured timing variations.” 
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There are several additional studies that demonstrate 

orbital instability and/or unconstrained orbital parameters 

of proposed multi-body circumbinary systems (HW Vir, 

SZ Her, QS Vir, NSVS 14256825, RZ Dra) and we refer the 

reader to the following sources in the literature (Horner et 

al. 2012b, Hinse et al. 2012b, Horner et al. 2013, Wittenmyer 

et al. 2013, Hinse et al. 2014a,b) for more details. 

In this work we present the results of a dynamical 

orbit stability analysis of the two proposed circumbinary 

companions of the eclipsing binary SW Lyncis (Kim et 

al. 2010). In their timing analysis of historical plus newly 

acquired photometric observations the authors found the 

sound evidence of a 5.8-year cycle along with a somewhat 

less tightly constrained cycle of 33.9 years. In their quest 

to find a plausible explanation the authors attempted to 

explain (among other possible explanations) the timing 

variations with a possible pair of light-travel time orbits 

corresponding to two circumbinary companions. In 

their discussion on the 34-year cycle Kim et al. (2010) 

highlighted that the two conjectured companions are 

unlikely to approach each other within 5 au considering 

coplanar orbits. This statement motivated us to test the 

system’s overall stability by numerically evaluating the 

orbital trajectories using the osculating best-fit Keplerian 

parameters (as obtained from their light-travel time model) 

and their corresponding errors (Kim et al. 2010) as the initial 

conditions in this work.

 This work is structured as follows. In section 2 we briefly 

review the mathematical formulation of the LITE effect 

resulting in the proposition of the two possible circumbinary 

companions. We highlight the underlying assumptions and 

also outline the derivation of the companion orbits from 

their associated LITE orbits. In section 3 we give a short 

description of the numerical techniques and methods used 

in this work. In section 4 we present numerical results of 

an orbital stability analysis for coplanar companion orbits. 

In section 5 we generalize and consider scenarios where 

the two companions move on mutually inclined orbits, as 

well as scenarios in which their orbits are coplanar, but 

their masses differ from those used in section 4. Section 6 

concludes our analysis.

2. DETAILS OF LITE AND ORBITAL PROPERTIES 
OF SW LYN AND PROPOSED COMPANIONS

The mathematical formulation of the single-companion 

LITE effect was described in great detail by Irwin (1952). In 

its simplest version, the modelling of timing measurements 

requires a set of 2 + 5 parameters. The first two parameters 

describe the linear ephemeris of the eclipsing binary and 

the remaining five describe the size, shape and orientation 

of the LITE orbit. We remind the reader that the LITE orbit 

utilizes the two-body formulation and represents the orbit 

of the binary barycenter around the binary-companion 

center of mass. The first assumption in this formulation is 

that the binary orbit is small compared to the LITE orbit. A 

period variation due to LITE is then regarded as a geometric 

effect. In that case the binary is treated as a single massive 

object with mass equal to the sum of masses of the two 

components.

If T
0
 is chosen to be some arbitrary reference epoch, P

0
 

measures the eclipse period of the binary, and considering 

the case of a single companion, then the times of primary 

eclipses at epoch E are given by

                            

when considering co-planar orbits. This statement motivated us to test the system’s overall stability by 
numerically evaluating the orbital trajectories using the osculating best-fit Keplerian parameters (as obtained 
from their light-travel time model) and their corresponding errors (Kim et al. 2010) as the initial conditions in 
this work. 

 This work is structured as follows. In section 2 we briefly review the mathematical formulation of the LITE 
effect resulting in the proposition of the two possible circumbinary companions. We highlight the underlying 
assumptions and also outline the derivation of the companion orbits from their associated LITE orbits. In 
section 3 we give a short description of the numerical techniques and methods used in this work. In section 4 
we present numerical results of an orbital stability analysis for co-planar companion orbits. In section 5 we 
generalize and consider scenarios where the two companions move on mutually inclined orbits, as well as 
scenarios in which their orbits are co-planar, but their masses differ from those used in section 4. Section 6 
concludes our analysis.  

 
2. DETAILS OF LITE AND ORBITAL PROPERTIES OF SW LYN AND PROPOSED 
COMPANIONS 
 

The mathematical formulation of the single-companion LITE effect was described in great detail by Irwin 
(1952). In its simplest version, the modelling of timing measurements requires a set of 2 + 5 parameters. The 
first two parameters describe the linear ephemeris of the eclipsing binary and the remaining five describe the 
size, shape and orientation of the LITE orbit. We remind the reader that the LITE orbit utilizes the two-body 
formulation and represents the orbit of the binary barycenter around the binary-companion center of mass. The 
first assumption in this formulation is that the binary orbit is small compared to the LITE orbit. A period 
variation due to LITE is then regarded as a geometric effect. In that case the binary is treated as a single 
massive object with mass equal to the sum of masses of the two components. 

If T0 is chosen to be some arbitrary reference epoch, P0 measures the eclipse period of the binary, and 
considering the case of a single companion, then the times of primary eclipses at epoch E are given by 

 
T (E) = T0 + P0 × E + τ (1) 
 

where measures the LITE effect and is a function of the orbital elements denoted as projected semi-major 
axis (a sin I), eccentricity (e), argument of pericenter (ω), time of pericenter passage (T) and orbital period(P). 
The cycle number E appears implicitly via Kepler’s equation and we refer the interested reader to Hinse et al. 
(2012a) for details. In practice, once a best-fit single LITE oribit has been determined, the quantity T(E)−(T0+P0 
∗E) is plotted and most often denoted as “O − C”, eventually revealing one or more modulations of the binary 
period.  

In the case of a second cyclic variation one often assumes the principle of superposition. Assuming the 
absence of mutual gravitational interactions between the two companions, the standard praxis in timing 
analysis-work usually considers two separated Keplerian orbits. Only the interaction between the companion 
and the combined binary mass is considered. Perturbations between the two unseen companions are neglected. 
The basis of a timing analysis then attempts to explain the total timing variation as the sum of two LITE orbits 
(Hinse et al. 2012b). All measurements are then simultaneously modelled during the least-squares minimisation 
procedure with possible weights. In Table 1 we reproduce the Keplerian SW Lyn LITE elements from Kim et 
al. (2010) for the two companions along with their 1-sigma formal uncertainties. We would like to highlight 
that these orbital elements were calculated neglecting any possible influence of external gravitational 
perturbations. 
 
2.1 The SW Lyncis System 
 

We will now direct our attention to the details of the binary and its proposed companions. SW Lyn is a 
detached eclipsing binary of Algol type with an orbital period of around 16 hours. The mass of the two 
components are 1.77 M⊙ and 0.92 M⊙ (Kim et al. 2010). From Table 1 we note that the short-period LITE 
orbit has an eccentricity of 0.58. The long-period LITE orbit is circular. The masses of the two components are 
found from the mass-function (Hinse et al. 2012a,b) and are therefore minimum masses with the sin I factor 
undetermined. The geometric orientation of the system can only be definitively determined in the case where 
the unseen companion is observed to eclipse or transit one or other of the binary components. In that case, it 
becomes possible to determine the true mass of the unseen companion. In all other cases, the degeneracy 
between the mass and inclination of the system remains.  

The Keplerian orbital elements of a companion can be derived from first principles. As a result of barycentric 
orbits and as pointed out in Hinse et al. (2012b) the eccentricity, the time of pericenter passage and the orbital 

(1)

where  measures the LITE effect and is a function of the 

orbital elements denoted as projected semi-major axis (a 

sin I), eccentricity (e), argument of pericenter (ω), time 

of pericenter passage (T) and orbital period(P). The cycle 

number E appears implicitly via Kepler’s equation and we 

refer the interested readers to Hinse et al. (2012a) for details. 

In practice, once a best-fit single LITE oribit has been 

determined, the quantity T(E)−(T
0
+P

0×E) is plotted and 

most often denoted as “O − C”, eventually revealing one or 

more modulations of the binary period. 

In the case of a second cyclic variation one often assumes 

the principle of superposition. Assuming the absence 

of mutual gravitational interactions between the two 

companions, the standard praxis in timing analysis-work 

usually considers two separated Keplerian orbits. Only the 

interaction between the companion and the combined 

binary mass is considered. Perturbations between the two 

unseen companions are neglected. The basis of a timing 

analysis then attempts to explain the total timing variation 

as the sum of two LITE orbits (Hinse et al. 2012b). All 

measurements are then simultaneously modelled during 

the least-squares minimisation procedure with possible 

weights. In Table 1 we reproduce the Keplerian SW Lyn LITE 

elements from Kim et al. (2010) for the two companions 

along with their 1-sigma formal uncertainties. We would 

like to highlight that these orbital elements were calculated 

neglecting any possible influence of external gravitational 

perturbations.

2.1 The SW Lyncis System

We will now direct our attention to the details of the binary 
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and its proposed companions. SW Lyn is a detached eclipsing 

binary of Algol type with an orbital period of around 16 

hours. The mass of the two components are 1.77 M
⊙

 and 0.92 

M
⊙

 (Kim et al. 2010). From Table 1 we note that the short-

period LITE orbit has an eccentricity of 0.58. The long-period 

LITE orbit is circular. The masses of the two components 

are found from the mass-function (Hinse et al. 2012a,b) 

and are therefore minimum masses with the sin I factor 

undetermined. The geometric orientation of the system can 

only be definitively determined in the case where the unseen 

companion is observed to eclipse or transit one or the other 

of the binary components. In that case, it becomes possible 

to determine the true mass of the unseen companion. In all 

other cases, the degeneracy between the mass and inclination 

of the system remains. 

The Keplerian orbital elements of a companion can be 

derived from first principles. As a result of barycentric orbits 

and as pointed out in Hinse et al. (2012b) the eccentricity, the 

time of pericenter passage and the orbital period of the LITE 

orbit are the same for the associated companion orbit. Since 

the two orbits are in the same plane (not to be confused with 

the two companion orbits) the sin I factor are also the same. 

The only differences occur for the argument of pericenter 

and projected (or minimum) semi-major axes. With respect 

to the argument of pericenter the orbit of the companion is 

anti-aligned to its associated LITE orbit. We therefore have 

a 180 degrees difference between the two apsidal lines. The 

semi-major axis can be computed using one of two different 

methods. The first method makes use of Kepler’s third law. 

Since the minimum mass of the companion and its orbital 

period are known quantities the projected semi-major axis of 

the companion’s orbit is given as

               

period of the LITE orbit are the same for the associated companion orbit. Since the two orbits are in the same 
plane (not to be confused with the two companion orbits) the sin I factor are also the same. The only 
differences occur for the argument of pericenter and projected (or minimum) semi-major axes. With respect to 
the argument of pericenter the orbit of the companion is anti-aligned to its associated LITE orbit. We therefore 
have a 180 degrees difference between the two apsidal lines. The semi-major axis can be computed using one 
of two different methods. The first method makes use of Kepler’s third law. Since the minimum mass of the 
companion and its orbital period are known quantities the projected semi-major axis of the companion’s orbit is 
given as 
 

 sin  = 	
( +sin )

4 
/

																											(2) 
 
where M is the total mass of the dynamical center which in this case is the combined binary components (M = 
2.69 M⊙) and k2 is the Gauss gravitational constant. We would like to stress that the projected semimajor axis a 
sin I is relative to the combined binary treated as the dynamical center. Therefore the semimajor axis in the 
above equation is for an astrocentric system since Kepler’s third law is only valid in a system with a single 
dynamical center. 
The second method considers the two orbits in their barycentric reference frames. To illustrate the difference 
between these two techniques, in Fig. 1 we plot a LITE orbit and its associated companion orbit as an 
example. Following Murray & Dermott (2001) the projected semi-major axis of the LITE orbit (, sin ) 
and the astrocentric orbit (a1 sin I) of the unseen com- panion are related to each other via the masses as follows 
 

 sin  = 	, sin   sin  +
 sin  																				(3) 

 
The right-hand side only contains known quantities listed in Table 1. In Table 2 we show numerical values of 

all known orbital quantities for the orbit of the two companions. The semi-major axis as computed from the two 
methods agree well with the discrepancies (at the 1% level) most likely resulting from the uncertainties of the 
best-fit parameters. At this stage we point out that throughout this study we adapt numerical values for the 
astrocentric orbits (Table 2) as calculated by Eq. 2. 

In Fig. 2 we show two Keplerian orbits of the companions perpendicular to the sky plane assuming coplanar 
orbits = 	  = 	  = 	90°. The orbital apocenter of the inner orbit is calculated as(1 +	) = 4.9(1 +
0.581) = 7.7	au. This distance implies that the two orbits are well separated and is a promising indication of 
stability. However, the masses of the proposed SW Lyn companions are large, and might render the system too 
energetic for their orbits to remain gravitationally bound on long timescales. This should be tested. The 
interesting question is whether the orbits will remain relatively unperturbed and continue to trace out their 
respective paths in a numerical integration? To support and substantiate the LITE interpretation of the timing 
measurements as a periodic recurring phenomena due to two massive companions, the answer should be yes. A 
dynamical analysis will be the subject of the next sections considering various orbital geometries as well as 
different masses of the companions to infer the dynamical stability of the SW Lyn multi-body system. 
 
3. ORBIT INTEGRATION TECHNIQUE AND NUMERICAL METHODS 
 

A dynamical analysis aims to investigate the temporal evolution of an ensemble of orbits located in the 
neighbourhood of the best-fit solution. In this work we utilise two distinct numerical methods. The first 
technique involves the orbit integration package MERCURY (Chambers 1999). This package allows the 
numerical integration of single orbits gravitationally interacting with each other. It offers several algorithms for 
the solution of the first order differential equations describing the system’s equations of motion. In this work 
we made use of the Bulirsch-Stoer method featuring adaptive time stepping to accurately resolve close 
encounters. In all our integrations we used an initial time step of 0.01 days. The integration accuracy parameter 
was set to 10−14. The package allows the specification of initial conditions in an astrocentric reference frame 
and is therefore suitable for our problem. We have previously applied this package in similar studies and we 
refer to Horner et al. (2011), Hinse et al. (2012b) and Hinse et al. (2014a) for numerical tests.  

The other technique is the computation of a fast chaos indicator known as MEGNO (Mean Exponential 
Growth factor of Nearby Orbits) as introduced by Cincotta et al. (2003). The latter found wide-spread 
application in dynamical astronomy and celestial mechanics (Go´zdziewski et al. 2001, Hinse et al. 2010, 
Kostov et al. 2013) and is an effective tool to explore the phasespace topology of a dynamical system. In this 
work we have applied the MEGNO technique to the gravitational three-body problem with focus on the 

(2)

where M is the total mass of the dynamical center which in 

this case is the combined binary components (M = 2.69 M
⊙

) 

and k2 is the Gauss gravitational constant. We would like 

to stress that the projected semimajor axis a sin I is relative 

to the combined binary treated as the dynamical center. 

Therefore the semimajor axis in the above equation is for an 

astrocentric system since Kepler’s third law is only valid in a 

system with a single dynamical center.

The second method considers the two orbits in their 

barycentric reference frames. To illustrate the difference 

between these two techniques, in Fig. 1 we plot a LITE 

orbit and its associated companion orbit as an example. 

Following Murray & Dermott (2001) the projected semi-

major axis of the LITE orbit (a
1,LITE

 sin I) and the astrocentric 

orbit (a
1
 sin I) of the unseen companion are related to each 

other via the masses as follows
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differences occur for the argument of pericenter and projected (or minimum) semi-major axes. With respect to 
the argument of pericenter the orbit of the companion is anti-aligned to its associated LITE orbit. We therefore 
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different masses of the companions to infer the dynamical stability of the SW Lyn multi-body system. 
 
3. ORBIT INTEGRATION TECHNIQUE AND NUMERICAL METHODS 
 

A dynamical analysis aims to investigate the temporal evolution of an ensemble of orbits located in the 
neighbourhood of the best-fit solution. In this work we utilise two distinct numerical methods. The first 
technique involves the orbit integration package MERCURY (Chambers 1999). This package allows the 
numerical integration of single orbits gravitationally interacting with each other. It offers several algorithms for 
the solution of the first order differential equations describing the system’s equations of motion. In this work 
we made use of the Bulirsch-Stoer method featuring adaptive time stepping to accurately resolve close 
encounters. In all our integrations we used an initial time step of 0.01 days. The integration accuracy parameter 
was set to 10−14. The package allows the specification of initial conditions in an astrocentric reference frame 
and is therefore suitable for our problem. We have previously applied this package in similar studies and we 
refer to Horner et al. (2011), Hinse et al. (2012b) and Hinse et al. (2014a) for numerical tests.  

The other technique is the computation of a fast chaos indicator known as MEGNO (Mean Exponential 
Growth factor of Nearby Orbits) as introduced by Cincotta et al. (2003). The latter found wide-spread 
application in dynamical astronomy and celestial mechanics (Go´zdziewski et al. 2001, Hinse et al. 2010, 
Kostov et al. 2013) and is an effective tool to explore the phasespace topology of a dynamical system. In this 
work we have applied the MEGNO technique to the gravitational three-body problem with focus on the 

(3)

The right-hand side only contains known quantities listed 

in Table 1. In Table 2 we show numerical values of all known 

orbital quantities for the orbit of the two companions. The 

semi-major axis as computed from the two methods agree 

well with the discrepancies (at the 1% level) most likely 

resulting from the uncertainties of the best-fit parameters. 

Fig. 1. Illustration of the two-body problem in a barycentric reference system. 
The barycenter is marked with a “X”. The (combined) binary has mass M and its 
or- bit corresponds to the LITE orbit. The unseen companion has mass m.

a sin I (au) - 1.333(9) 0.742(18) 
e - 0.581(6) 0.00(3) 

ω (degrees) - 188(7) - 
T (HJD) - 2,438,818(12) - 
P (years) - 5.791(4) 33.9(5) 
K (days) - 0.0063(1) 0.0043(3) 

m sin I(M⊙) - 0.91(2) 0.14(1) 
 
Table 2. Astrocentric orbital elements of the two proposed companions derived from first principles and 
Kepler’s third law of orbital motion. The dynamical center corresponds to the binary barycenter with mass 2.69 
M⊙. Uncertainties for the derived quantities have been obtained from standard error propagation assuming 
uncorrelated uncertainties. 

Element SW Lyn(AB)C (i = 1) SW Lyn(AB)D (i = 2) 
, sin (au) from Eq. 2 4.954 ± 0.012 14.816 ± 0.17 
, sin (au) from Eq. 3 5.153 ± 0.062 14.361 ± 1.09 

, 0.581 ± 0.006 0.00 ± 0.030 
, (degrees) 188 ± 7 − 180 = 8 ± 7 - 
,  (days) 2115.16 ± 1.46 12381.98 ± 182.6 
, sin (M⊙) 0.91 ± 0.02 0.14 ± 0.01 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Illustration of the two-body problem in a barycentric reference system. The barycenter is marked with a 
“X”. The (combined) binary has mass M and its or- bit corresponds to the LITE orbit. The unseen companion 
has mass m. 
 
 
 
 

Table 1.	Best-fit elements (the first 7) of the two LITE orbits (determined 
from simultaneous fitting) as reproduced from (Kim et al. 2010, their table 
3). K measures the semi-amplitude and is calculated from Eq. 4 in Irwin 
(1952). The minimum masses for the two companions is determined 
iteratively using the mass-function and are consistent with two separate 
Kepler orbits with the combined binary in one focus of the ellipse. 
Because the 4th body orbit is circular (e2 = 0.0) the argument of pericenter 
(ω) and time of pericenter passage (T) are undefined. Numbers in 
paranthesis denote the uncertainty of the last digit as adopted from Kim 
et al. (2010). The mass of the primary and secondary components are 1.77 
M⊙ and 0.92 M⊙, respectively.

Element Linear term Inner LITE orbit Outer LITE orbit

T0 (HJD)
P0 (days)

a sin I (au)
e

ω (degrees)
T (HJD)
P (years)
K (days)

m sin I(M⊙)

2,443,975.3869(1)
0.64406637(2)

-
-

1.333(9)
0.581(6)
188(7)

2,438,818(12)
5.791(4)

0.0063(1)
0.91(2)

-
-

0.742(18)
0.00(3)

-
-

33.9(5)
0.0043(3)

0.14(1)

Table 2.	Astrocentric orbital elements of the two proposed companions 
derived from first principles and Kepler’s third law of orbital motion. The 
dynamical center corresponds to the binary barycenter with mass 2.69 
M⊙. Uncertainties for the derived quantities have been obtained from 
standard error propagation assuming uncorrelated uncertainties.

Element SW Lyn(AB)C (i = 1) SW Lyn(AB)D (i = 2)

a1,2 sin I(au) from Eq. 2
a1,2 sin I(au) from Eq. 3

e1,2

ω1,2 (degrees)
P1,2 (days)

m1,2 sin I(M⊙)

4.954 ± 0.012
5.153 ± 0.062
0.581 ± 0.006

188 ± 7 − 180 = 8 ± 7
2115.16 ± 1.46

0.91 ± 0.02

14.816 ± 0.17
14.361 ± 1.09
0.00 ± 0.030

-
12381.98 ± 182.6

0.14 ± 0.01
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At this stage we point out that throughout this study we 

adapt numerical values for the astrocentric orbits (Table 2) 

as calculated by Eq. 2.

In Fig. 2 we show two Keplerian orbits of the companions 

perpendicular to the sky plane assuming coplanar 

orbits(I=I
1
=I

2
=90°). The orbital apocenter of the inner orbit 

is calculated to be as a
1
(1+e

1
)=4.9(1+0.581)=7.7 au. This 

distance implies that the two orbits are well separated and 

is a promising indication of stability. However, the masses 

of the proposed SW Lyn companions are large, and might 

render the system too energetic for their orbits to remain 

gravitationally bound on long timescales. This should 

be tested. The interesting question is whether the orbits 

will remain relatively unperturbed and continue to trace 

out their respective paths in a numerical integration? To 

support and substantiate the LITE interpretation of the 

timing measurements as a periodic recurring phenomena 

due to two massive companions, the answer should be yes. 

A dynamical analysis will be the subject of the next sections 

considering various orbital geometries as well as different 

masses of the companions to infer the dynamical stability of 

the SW Lyn multi-body system.

3. ORBIT INTEGRATION TECHNIQUE AND 
NUMERICAL METHODS

A dynamical analysis aims to investigate the temporal 

evolution of  an ensemble of  orbits  located in the 

neighbourhood of the best-fit solution. In this work we utilise 

two distinct numerical methods. The first technique involves 

the orbit integration package MERCURY (Chambers 1999). 

This package allows the numerical integration of single orbits 

gravitationally interacting with each other. It offers several 

algorithms for the solution of the first order differential 

equations describing the system’s equations of motion. In this 

work we made use of the Bulirsch-Stoer method featuring 

adaptive time stepping to accurately resolve close encounters. 

In all our integrations we used an initial time step of 0.01 

days. The integration accuracy parameter was set to 10−14. 

The package allows the specification of initial conditions in 

an astrocentric reference frame and is therefore suitable for 

our problem. We have previously applied this package in 

similar studies and we refer to Horner et al. (2011), Hinse et 

al. (2012b) and Hinse et al. (2014a) for numerical tests. 

The other technique is the computation of a fast chaos 

indicator known as MEGNO (Mean Exponential Growth 

factor of Nearby Orbits) as introduced by Cincotta et al. 

(2003). The latter found widespread application in dynamical 

astronomy and celestial mechanics (Go´zdziewski et al. 2001, 

Hinse et al. 2010, Kostov et al. 2013) and is an effective tool 

to explore the phasespace topology of a dynamical system. 

In this work we have applied the MEGNO technique to the 

gravitational three-body problem with focus on the proposed 

companions around SW Lyn. Our computations have made 

use of the KMTNet* computing cluster (multicore super-

computer using 33 Intel Xeon X5650 cores each running at 

2.7 GHz) to compute the dynamical MEGNO maps using 

the newly developed MECHANIC (Slonina et al. 2015) single 

task-farm software package.

The details of MEGNO are as follows. For a given initial 

condition of the three-body problem the equations of motion 

and variational equations (Mikkola & Innanen 1999) are 

solved in parallel. The MEGNO, usually denoted as <Y>, is 

then computed as described in detail in Go´zdziewski et al. 

(2001). In brevity, if <Y> after some integration time remains 

close to <Y> = 2, then the orbit is characterised by a quasi-

periodic time evolution. However, if <Y> is significantly larger 

than 2, we then judge the orbit to be chaotic. For clarity, 

a chaotic system does not automatically imply unstable 

orbits. However, unstable orbits will always imply chaotic 

time evolution. The important key-issue to consider is the 

integration length. If the moment of chaotic onset in the 

dynamical system requires a much longer time period than 

the integration time, then the possibility of erroneously 

concluding quasi-period is real. Therefore, one should 

integrate the system for long enough in order to allow the 

system to possibly exhibit chaotic behaviour. In this case, we 

Fig. 2. Geometry of the two unseen companions. Here we have projected 
their orbits on the skyplane with North being up and East being left. Both 
orbits were integrated numerically within the framework of the two-body 
problem. The origin of the coordinate system is the (approximate) barycenter 
of the binary and companion. The outer orbit is plotted for almost one orbital 
period.

 
Fig. 2. Geometry of the two unseen companions. Here we have projected their orbits on the skyplane with 
North being up and East being left. Both orbits were integrated numerically within the framework of the two-
body problem. The origin of the coordinate system is the (approximate) barycenter of the binary and 
companion. The outer orbit is plotted for almost one orbital period. 
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find that integrating the SW Lyn three-body system for 5,000 

orbits of the inner companion spans a sufficiently long time 

period to allow us to make firm conclusions on the overall 

stability of the SW Lyn multi-body system.

4. ORBITAL STABILITY ANALYSIS - COPLANAR 
ORBITS

A fundamental unknown is the orbital orientation 

(sin I) of the LITE orbit allowing us to only determine the 

minimum mass of the unseen companions. 

We first considered the most simple solution for the 

orbital geometry of the two unseen companions – coplanar 

orbits (following our earlier work; e.g. Horner et al. (2011), 

Hinse et al. (2012a,b), Wittenmyer et al. (2012, 2013)). The 

assumption of coplanar orbits is reasonable given that any 

companions would most likely have been formed from a 

single circumbinary protoplanetary disk. In all calculations 

the binary was treated as a single massive object in 

order to be consistent with the LITE formulation. Initial 

conditions for the two companions are listed in Table 2. The 

uncertainties in projected semi-major axis were obtained 

from standard error propagation.

We first calculated a dynamical MEGNO map exploring 

the (a
2
, e

2
) space of the outer companion. We considered 

a large range in orbital semi-major axis and eccentricities. 

Since the orbit of the short-period companion is relatively 

well characterised, we kept its orbit fixed. The result is 

shown in Fig. 3. We explored the range a
2
 ∈ [10, 20] au and 

e
2
 ∈ [0, 1]. For all probed orbits we find the system to exhibit 

a chaotic time evolution. 

However, in the astrodynamical multi-body problem a 

chaotic orbit does not strictly imply instability. We therefore 

investigated the stability of single orbits by considering a 

large ensemble of initial conditions within the 1-sigma error 

uncertainties of the orbital parameters. In each integration 

the system was followed for 10,000 years. We investigated 

the effects of placing the proposed companions at different 

initial mean longitudes considering the range [0,360] in 

steps of 10 degrees. For the inner eccentric orbit we also 

investigated the influence of the argument of pericenter 

parameter by also considering the range [0,360] of this 

angle in steps of 10 degrees. This was not possible for 

the outer companion as the best-fit LITE orbit seems to 

be very circular. Hence the argument of pericenter is not 

defined. Systematic combinations of those angles were 

also considered and tested as part of our stability study. In 

addition we also varied the mass and eccentricities of the 

two companions. 

In all cases we found the system to be highly unstable 

with one of the components either being ejected from the 

system or colliding with the central binary. To illustrate our 

findings we show some results in Fig. 4. For Fig. 4A and Fig. 

4B the inner companion collided with the central binary 

after just a few years. For Fig. 4C the orbit survived for 1,000 

years. However, their time evolution obviously does not 

resemble the geometry of the two proposed companions as 

presented in Kim et al. (2010). In fact, this system is unstable 

in the sense that the outer companion collided with the 

central binary after 3704 years and the inner companion was 

ejected after 3281 years. We show these particular examples 

as the considered parameters should render the system 

to become more stable. In general low-mass and circular 

orbits will always have the effect to increase the longevity of 

a gravitational multi-body system. The solutions highlighted 

in this figure were chosen as they represent cases where 

the initial orbital parameters should have been the most 

promising in terms of the stability of the system - with low 

eccentricities and masses for the companion bodies.

5. Orbital Stability Analysis - Inclined Orbits

We have also considered various inclinations of the orbits 

relative to the sky-plane. The orbits were still considered 

to be coplanar relative to each other. We have therefore 

considered several values of the line-of-sight to sky-plane 

inclinations and scaled the masses accordingly for the 

two companions. However, we stress that the most likely 

geometric orientation are orbits with sin I=90° since the 

companions were most likely formed in the same plane 

Fig. 3. Dynamical MEGNO map for the outer companion of SW Lyn. Because 
the orbital parameters of the inner companion are well determined we kept 
them fixed at their osculating values shown in Table 2. The black dot indicates 
the best-fit osculating orbit of SW Lyn(AB)D.

Fig. 3. Dynamical MEGNO map for the outer companion of SW Lyn. Because the orbital parameters of the 
inner companion are well determined we kept them fixed at their osculating values shown in Table 2. The black 
dot indicates the best-fit osculating orbit of SW Lyn(AB)D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Results from direct integrations of the SW Lyn three-body problem for sin I = 1. We consider three 
cases. Panel A): Initial conditions as shown in Table 2. Panel B): Same as previous panel, but now the 
eccentricity of Inner companion is set to zero (circular orbit). Panel C): Same as previous panel, but now the 
mass of inner companion is set to 0.14M⊙. 
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as the binary orbit. An example of such a system would 

be Kepler-16 (Doyle et al. 2011) consisting of a transiting 

circumbinary planet embedded in the same plane as the 

binary orbit. In Fig. 5 we show the results from our survey. 

Initial conditions for all the other orbital parameters are 

shown in Table 2. The results rigorously show that all 

considered start conditions result in unstable orbits. As 

was the case in the previous section we detected both 

collision and ejection events. In particular, ejection events 

are clearly demonstrated for I
1,2

 = 5, 10, 30, 50 degrees. The 

remaining two cases (I
1,2

 = 70 and I
1,2

 = 80 degrees) resulted 

in a collision between the outer companion and the central 

binary. 

A final exercise in this stability study was to consider 

mutual inclinations between the two companions. Invoking 

a relative inclinations reflects the situation where the two 

companions have not formed from the same disk or their 

orbits have subsequently evolved as a result of unknown 

perturbations (i.e Kozai cycles due to a distant massive 

perturber) leading to a non-coplanar configuration. We 

have considered several relative inclinations and retained 

the mass of the two companions to be their minimum 

Fig. 4. Results from direct integrations of the SW Lyn three-body problem for sin I = 1. We consider three cases. Panel A): Initial conditions as shown in Table 2. 
Panel B): Same as previous panel, but now the eccentricity of Inner companion is set to zero (circular orbit). Panel C): Same as previous panel, but now the mass of 
inner companion is set to 0.14M⊙.

Fig. 3. Dynamical MEGNO map for the outer companion of SW Lyn. Because the orbital parameters of the 
inner companion are well determined we kept them fixed at their osculating values shown in Table 2. The black 
dot indicates the best-fit osculating orbit of SW Lyn(AB)D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Results from direct integrations of the SW Lyn three-body problem for sin I = 1. We consider three 
cases. Panel A): Initial conditions as shown in Table 2. Panel B): Same as previous panel, but now the 
eccentricity of Inner companion is set to zero (circular orbit). Panel C): Same as previous panel, but now the 
mass of inner companion is set to 0.14M⊙. 
 
 
 
 
 

Fig. 5. Results from direct integrations of the SW Lyn three-body problem considering scenarios in which the orbits of the unseen companions are coplanar, but 
aligned at varying angles to our line of sight. The mass of the two companions were scaled accordingly. The two companions are still embedded in the same plane. 
Both ejections and collisions events were registered shortly after the start of integration. All initial conditions follow highly unstable orbits. The masses for the two 
companions were as follows. I1,2 = 5: (inner=10.44 M⊙, outer=1.61 M⊙). I1,2 = 10: (inner=5.24 M⊙, outer=0.81 M⊙). I1,2 = 30: (inner=1.82 M⊙, outer=0.28 M⊙). I1,2 = 50: 
(inner=1.19 M⊙, 0.18 M⊙). I1,2 = 70 (inner=0.97 M⊙, 0.15 M⊙). I1,2 = 80: (inner=0.92 M⊙, outer=0.14 M⊙.).

 
Fig. 5. Results from direct integrations of the SW Lyn three-body problem considering scenarios in which the 
orbits of the unseen companions are coplanar, but aligned at varying angles to our line of sight. The mass of the 
two companions were scaled accordingly. The two companions are still embedded in the same plane. Both 
ejections and collisions events were registered shortly after the start of integration. All initial conditions follow 
highly unstable orbits. The masses for the two companions were as follows. I1,2 = 5: (inner=10.44 M⊙, 
outer=1.61 M⊙). I1,2 = 10: (inner=5.24 M⊙, outer=0.81 M⊙). I1,2 = 30: (inner=1.82 M⊙, outer=0.28 M⊙). I1,2 = 
50: (inner=1.19 M⊙, 0.18 M⊙). I1,2 = 70 (inner=0.97 M⊙, 0.15 M⊙). I1,2 = 80: (inner=0.92 M⊙, outer=0.14 M
⊙). 
 
 
 
 
 
 

 
Fig. 6. Results from direct integrations of the SW Lyn three-body problem considering mutually inclined orbits. 
The three panels show the orbits with relative inclinations of 10, 45 and 80 degrees. The masses of the 
companions were taken to be their minimum values as shown in Table 2. 
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mass values. We considered several values of mutual 

orbital inclination, and in each case gave the system the 

maximal likelihood of stability by setting the mass of both 

companions to their minimum mass values. A subset of our 

test orbits are plotted in Fig. 6 considering three values of 

the relative inclination. Again, we find that the orbits tend 

to be highly unstable, and diverge from those proposed for 

the two companions on the basis of LITE analysis on very 

short timescales, drawing significant doubt on the currently 

proposed nature of the system.

6. CONCLUSIONS AND DISCUSSION

In this study we have carried out a detailed orbital 

stability study of the multi-body system proposed to orbit 

around SW Lyn. In their work Kim et al. (2010) conjectured 

about the possibility of the existence of two circumbinary 

companions forming a quadruple system. The authors 

present substantial modelling work that aims to explain 

the observed timing variations by a pair of light-time orbits 

while pointing out that the outer companion might be 

doubtful. In this work we have rigorously shown that all our 

numerical integrations resulted in a swift disintegration of 

the proposed system, with the unseen companions being 

removed through collision or ejection on timescales of just a 

few thousand years, or less. This allows us to conclude that 

the proposed companions most likely do not exist or the 

companions exhibit a much different orbital architecture.

Several assumptions were made and in the following we 

would like to discuss some of them. First the mathematical 

formulation of the LITE effect assumes that the binary can 

be replaced by a single massive object positioned at the 

binary barycenter. This assumption might be acceptable 

provided that the companion orbits are much larger than 

the binary orbit. Otherwise, gravitational perturbations 

on the binary orbit will result in additional eclipse timing 

variation. Furthermore, all objects in this study were treated 

as pointmasses. This implies that we have not considered 

tidal effects between otherwise extended masses. However, 

at urrent time we are not aware of the possibility that tidal 

interaction could have a significant stabilising effect on the 

orbits of gravitationally interacting bodies. This possibility 

is an interesting question and might form part of a future 

investigation. A detailed treatment of tidal interaction is 

beyond the scope of this study.

A n o t h e r  a s s u m p t i o n  i s  t h e  a p p l i c a t i o n  o f  t h e 

superposition principle of two light-time orbits. In principle, 

this approach is incorrect, since the two companions will 

clearly perturb one another’s orbits. This in turn, would 

introduce a feedback to the binary orbit, which will also 

change as a result, driving more complex timing variation in 

addition to the geometric LITE effect. The effects of mutual 

interactions are important to take into account, especially 

when considering substeller mass companions on slightly 

to moderately eccentric orbits.

H o w e v e r,  f o r  s m a l l e r  m a s s e s  t h e  p r i n c i p l e  o f 

superposition applied to two light-time orbits is more 

correct as the two masses interact less with each other. 

This situation has recently been demonstrated through 

the generation of synthetic n-body data aiming to model 

the light-travel time effect caused by two interacting 

circumbinary planets (Hinse & Lee 2014c). These authors 

numerically created a synthetic dataset which mimics a two-

body light-travel time effect. They successfully reproduced 

the known input parameters of the two planets from a least-

squares minimisation technique. 

Recently, the LITE effect has been formulated in terms 

of Jacobi coordinates and might serve as an alternative o 

the superposition principle (Go´zdziewski et al. 2012). In 

their work the authors describe the LITE orbit as a result of 

several companions in a hierarchical order. 

Fig. 6. Results from direct integrations of the SW Lyn three-body problem considering mutually inclined orbits. The three panels show the orbits with relative 
inclinations of 10, 45 and 80 degrees. The masses of the companions were taken to be their minimum values as shown in Table 2.
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In this work, we have explicitly shown observed eclipse 

timing variations of the SW Lyn system cannot be the result 

of the unseen massive companions proposed by Kim et 

al. (2010). The system conjectured in that work proved to 

be unstable on timescales of just a few thousand years - 

far too short to be considered dynamically feasible. One 

possible explanation for this discrepancy might be that 

the observed 34-year modulation of the system may not 

be the result of an additional companion, but may instead 

have another explanation. In other words, the short-period 

modulation may well turn out to be the result of an unseen 

companion, with the long-period trend instead being the 

result of the magnetic activity of one or other of the binary 

components. Such a one-companion interpretation could 

well be more viable, since it essentially solves the instability 

issue. Indeed, such a solution was recently proposed to 

explain the observed timing variations of the HU Aqr binary 

system Go´zdziewski et al. (2012). In that work, the authors 

suggested that mixed timing measurements obtained 

from different photometric passbands (different spectral 

domains) might result in unaccounted correlated (red) 

noise in the timing data. The detection of a single LITE orbit 

with significant confidence was recently announced (Lee et 

al. 2013). However, if the short-period modulation is truly 

associated with a companion in SWLyn, then why does it 

have a large eccentricity? Large eccentricities are usually 

explained by the gravitational influence by additional bodies 

and would point towards an outer companion. Therefore, an 

additional explanation would be that the period modulation 

is due to two companions, but exhibiting a substantially 

different orbital architecture from the one found by Kim et 

al. (2010).

The questions concerned SW Lyn are far from answered 

and future observations will contribute towards a better 

understanding of this interesting system. Additional 

monitoring (Pribulla et al. 2012, Sybilski et. al.)  of this 

system that leads to precise timing measurements and 

additional information is suggested in order to unveil the 

true nature of the possible companions.
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