250 research outputs found

    Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence

    Get PDF
    A growing body of preclinical evidence indicates that addiction to cocaine is associated with neuroadaptive changes in frontostriatal brain systems. Human studies in cocaine-dependent individuals have shown alterations in brain structure, but it is less clear how these changes may be related to the clinical phenotype of cocaine dependence characterized by impulsive behaviours and compulsive drug-taking. Here we compared self-report, behavioural and structural magnetic resonance imaging data on a relatively large sample of cocaine-dependent individuals (n = 60) with data on healthy volunteers (n = 60); and we investigated the relationships between grey matter volume variation, duration of cocaine use, and measures of impulsivity and compulsivity in the cocaine-dependent group. Cocaine dependence was associated with an extensive system of abnormally decreased grey matter volume in orbitofrontal, cingulate, insular, temporoparietal and cerebellar cortex, and with a more localized increase in grey matter volume in the basal ganglia. Greater duration of cocaine dependence was correlated with greater grey matter volume reduction in orbitofrontal, cingulate and insular cortex. Greater impairment of attentional control was associated with reduced volume in insular cortex and increased volume of caudate nucleus. Greater compulsivity of drug use was associated with reduced volume in orbitofrontal cortex. Cocaine-dependent individuals had abnormal structure of corticostriatal systems, and variability in the extent of anatomical changes in orbitofrontal, insular and striatal structures was related to individual differences in duration of dependence, inattention and compulsivity of cocaine consumption

    Distinctive Personality Traits and Neural Correlates Associated with Stimulant Drug Use Versus Familial Risk of Stimulant Dependence

    Get PDF
    BackgroundStimulant drugs such as cocaine and amphetamine have a high abuse liability, but not everyone who uses them develops dependence. However, the risk for dependence is increased for individuals with a family history of addiction. We hypothesized that individuals without a family history of dependence who have been using cocaine recreationally for several years but have not made the transition to dependence will differ in terms of personality traits and brain structure from individuals who are either dependent on stimulants or at risk for dependence.MethodsWe compared 27 individuals without a familial risk of dependence who had been using cocaine recreationally with 50 adults with stimulant dependence, their nondependent siblings (n = 50), and unrelated healthy volunteers (n = 52) who had neither a personal nor a family history of dependence. All participants underwent a magnetic resonance imaging brain scan and completed a selection of personality measures that have been associated with substance abuse.ResultsIncreased sensation-seeking traits and abnormal orbitofrontal and parahippocampal volume were shared by individuals who were dependent on stimulant drugs or used cocaine recreationally. By contrast, increased levels of impulsive and compulsive personality traits and limbic-striatal enlargement were shared by stimulant-dependent individuals and their unaffected siblings.ConclusionsWe provide evidence for distinct neurobiological phenotypes that are either associated with familial vulnerability for dependence or with regular stimulant drug use. Our findings further suggest that some individuals with high sensation-seeking traits but no familial vulnerability for dependence are likely to use cocaine but may have relatively low risk for developing dependence

    Evidence for a Long-Lasting Compulsive Alcohol Seeking Phenotype in Rats

    Get PDF
    Excessive drinking to intoxication is the major behavioral characteristic of those addicted to alcohol but it is not the only one. Indeed, individuals addicted to alcohol also crave alcoholic beverages and spend time and put much effort into compulsively seeking alcohol, before eventually drinking large amounts. Unlike this excessive drinking, for which treatments exist, compulsive alcohol seeking is therefore another key feature of the persistence of alcohol addiction since it leads to relapse and for which there are few effective treatments. Here we provide novel evidence for the existence in rats of an individual vulnerability to switch from controlled to compulsive, punishment-resistant alcohol seeking. Alcohol-preferring rats given access to alcohol under an intermittent 2-bottle choice procedure to establish their alcohol-preferring phenotype were subsequently trained instrumentally to seek and take alcohol on a chained schedule of reinforcement. When stable seeking-taking performance had been established, completion of cycles of seeking responses resulted unpredictably either in punishment (0.45 mA foot-shock) or the opportunity to make a taking response for access to alcohol. Compulsive alcohol seeking, maintained in the face of the risk of punishment, emerged in only a subset of rats with a predisposition to prefer and drink alcohol, and was maintained for almost a year. We show further that a selective and potent μ-opioid receptor antagonist (GSK1521498) reduced both alcohol seeking and alcohol intake in compulsive and non-compulsive rats, indicating its therapeutic potential to promote abstinence and prevent relapse in individuals addicted to alcohol

    Jumping the Gun: Mapping Neural Correlates of Waiting Impulsivity and Relevance Across Alcohol Misuse.

    Get PDF
    BACKGROUND: Why do we jump the gun or speak out of turn? Waiting impulsivity has a preclinical basis as a predictor for the development of addiction. Here, we mapped the intrinsic neural correlates of waiting and dissociated it from stopping, both fundamental mechanisms of behavioral control. METHODS: We used a recently developed translational task to assess premature responding and assess response inhibition using the stop signal task. We mapped the neural correlates in 55 healthy volunteers using a novel multi-echo resting-state functional magnetic resonance imaging sequence and analysis, which robustly boosts signal-to-noise ratio. We further assessed 32 young binge drinkers and 36 abstinent subjects with alcohol use disorders. RESULTS: Connectivity of limbic and motor cortical and striatal nodes mapped onto a mesial-lateral axis of the subthalamic nucleus. Waiting impulsivity was associated with lower connectivity of the subthalamic nucleus with ventral striatum and subgenual cingulate, regions similarly implicated in rodent lesion studies. This network was dissociable from fast reactive stopping involving hyperdirect connections of the pre-supplementary area and subthalamic nucleus. We further showed that binge drinkers, like those with alcohol use disorders, had elevated premature responding and emphasized the relevance of this subthalamic network across alcohol misuse. Using machine learning techniques we showed that subthalamic connectivity differentiates binge drinkers and individuals with alcohol use disorders from healthy volunteers. CONCLUSIONS: We highlight the translational and clinical relevance of dissociable functional systems of cortical, striatal, and hyperdirect connections with the subthalamic nucleus in modulating waiting and stopping and their importance across dimensions of alcohol misuse.The study was funded by the Wellcome Trust Fellowship grant for VV (093705/Z/10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. The BCNI is supported by a WT and MRC grant. ETB is employed part-time by the University of Cambridge and part-time by GSK PLC and is a shareholder of GSK. TWR is a consultant for Cambridge Cognition, Eli Lilly, GSK, Merck, Sharpe and Dohme, Lundbeck, Teva and Shire Pharmaceuticals. He is or has been in receipt of research grants from Lundbeck, Eli Lilly and GSK and is an editor for Springer-Verlag (Psychopharmacology). The remaining authors declare no competing financial interests.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.biopsych.2015.06.00

    Fronto-striatal organization: Defining functional and microstructural substrates of behavioural flexibility.

    Get PDF
    Discrete yet overlapping frontal-striatal circuits mediate broadly dissociable cognitive and behavioural processes. Using a recently developed multi-echo resting-state functional MRI (magnetic resonance imaging) sequence with greatly enhanced signal compared to noise ratios, we map frontal cortical functional projections to the striatum and striatal projections through the direct and indirect basal ganglia circuit. We demonstrate distinct limbic (ventromedial prefrontal regions, ventral striatum - VS, ventral tegmental area - VTA), motor (supplementary motor areas - SMAs, putamen, substantia nigra) and cognitive (lateral prefrontal and caudate) functional connectivity. We confirm the functional nature of the cortico-striatal connections, demonstrating correlates of well-established goal-directed behaviour (involving medial orbitofrontal cortex - mOFC and VS), probabilistic reversal learning (lateral orbitofrontal cortex - lOFC and VS) and attentional shifting (dorsolateral prefrontal cortex - dlPFC and VS) while assessing habitual model-free (SMA and putamen) behaviours on an exploratory basis. We further use neurite orientation dispersion and density imaging (NODDI) to show that more goal-directed model-based learning (MBc) is also associated with higher mOFC neurite density and habitual model-free learning (MFc) implicates neurite complexity in the putamen. This data highlights similarities between a computational account of MFc and conventional measures of habit learning. We highlight the intrinsic functional and structural architecture of parallel systems of behavioural control.VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. LM is in receipt of an MRC studentship. The BCNI is supported by a WT and MRC grant. ETB is employed part-time by the University of Cambridge and part-time by GSK PLC and is a shareholder of GSK. TWR is a consultant for Cambridge Cognition, Eli Lilly, GSK, Merck, Sharpe and Dohme, Lundbeck, Teva and Shire Pharmaceuticals. He is or has been in receipt of research grants from Lundbeck, Eli Lilly and GSK and is an editor for Springer-Verlag (Psychopharmacology). The remaining authors declare no competing financial interests. The study was funded by the Wellcome Trust Fellowship grant for VV (093705/Z/10/Z) and Cambridge NIHR Biomedical Research Centre.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.cortex.2015.11.00

    Carrots and sticks fail to change behavior in cocaine addiction.

    Get PDF
    Cocaine addiction is a major public health problem that is particularly difficult to treat. Without medically proven pharmacological treatments, interventions to change the maladaptive behavior of addicted individuals mainly rely on psychosocial approaches. Here we report on impairments in cocaine-addicted patients to act purposefully toward a given goal and on the influence of extended training on their behavior. When patients were rewarded for their behavior, prolonged training improved their response rate toward the goal but simultaneously rendered them insensitive to the consequences of their actions. By contrast, overtraining of avoidance behavior had no effect on patient performance. Our findings illustrate the ineffectiveness of punitive approaches and highlight the potential for interventions that focus on improving goal-directed behavior and implementing more desirable habits to replace habitual drug-taking.Sir Henry Wellcome Postdoctoral Fellowship (Grant ID: 101521/Z/12/Z)This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aaf370

    Effects of familial risk and stimulant drug use on the anticipation of monetary reward: an fMRI study.

    Get PDF
    The association between stimulant drug use and aberrant reward processing is well-documented in the literature, but the nature of these abnormalities remains elusive. The present study aims to disentangle the separate and interacting effects of stimulant drug use and pre-existing familial risk on abnormal reward processing associated with stimulant drug addiction. We used the Monetary Incentive Delay task, a well-validated measure of reward processing, during fMRI scanning in four distinct groups: individuals with familial risk who were either stimulant drug-dependent (N = 41) or had never used stimulant drugs (N = 46); and individuals without familial risk who were either using stimulant drugs (N = 25) or not (N = 48). We first examined task-related whole-brain activation followed by a psychophysiological interaction analysis to further explore brain functional connectivity. For analyses, we used a univariate model with two fixed factors (familial risk and stimulant drug use). Our results showed increased task-related activation in the putamen and motor cortex of stimulant-using participants. We also found altered task-related functional connectivity between the putamen and frontal regions in participants with a familial risk (irrespective of whether they were using stimulant drugs or not). Additionally, we identified an interaction between stimulant drug use and familial risk in task-related functional connectivity between the putamen and motor-related cortical regions in potentially at-risk individuals. Our findings suggest that abnormal task-related activation in motor brain systems is associated with regular stimulant drug use, whereas abnormal task-related functional connectivity in frontostriatal brain systems, in individuals with familial risk, may indicate pre-existing neural vulnerability for developing addiction.This research was funded by a Medical Research Council (MRC) grant (G0701497), and conducted within the Behavioural and Clinical Neuroscience Institute (BCNI), which is jointly funded by the MRC and Wellcome Trust. ALJ was supported by the Gates Cambridge Trust, DGS by a studentship from the Cambridge Overseas Trust, and CM by the Wellcome Trust (105602/Z/14/Z) and the NIHR Cambridge Biomedical Research Centre. TWR is supported by Wellcome Trust (104631/z/14/z)

    Inter-rater reliability of the Dysexecutive Questionnaire (DEX): comparative data from non-clinician respondents – all raters are not equal

    Get PDF
    Primary objective: The Dysexecutive Questionnaire (DEX) is used to obtain information about executive and emotional problems after neuropathology. The DEX is self-completed by the patient (DEX-S) and an independent rater such as a family member (DEX-I). This study examined the level of inter-rater agreement between either two or three non-clinician raters on the DEX-I in order to establish the reliability of DEX-I ratings. Methods and procedures: Family members and/or carers of 60 people with mixed neuropathology completed the DEX-I. For each patient, DEX-I ratings were obtained from either two or three raters who knew the person well prior to brain injury. Main outcomes and results: We obtained two independent-ratings for 60 patients and three independent-ratings for 36 patients. Intra-class correlations revealed that there was only a modest level of agreement for items, subscale and total DEX scores between raters for their particular family member. Several individual DEX items had low reliability and ratings for the emotion sub-scale had the lowest level of agreement. Conclusions: Independent DEX ratings completed by two or more non-clinician raters show only moderate correlation. Suggestions are made for improving the reliability of DEX-I ratings.</p
    corecore