9 research outputs found
Smart thermomechanochemical composite materials driven by different forms of electromagnetic radiation
Photo-thermo-mechanochemical (P-T-MCh) nanocomposites provide a mechanical and/or chemical output (MCh) in response to a photonic (P) input, with the thermal (T) flux being the coupling factor. The nanocomposite combines a photon absorbing nanomaterial with a thermosensitive hydrogel matrix. Conjugated (absorbing in the near infrared (NIR, 750â850 nm) wavelength range) polymer (polyaniline, PANI) nanostructures are dispersed in cross-linked thermosensitive (poly(N-isopropylacrylamide), PNIPAM) hydrogel matrices, giving the nanocomposite P-T-MCh properties. Since PANI is a conductive polymer, electromagnetic radiation (ER) such as radiofrequency (30 kHz) and microwaves (2.4 GHz) could also be used as an input. The alternating electromagnetic field creates eddy currents in the PANI, which produces heat through the Joule effect. A new kind of âproductâ nanocomposite is then produced, where ER drives the mechanochemical properties of the material through thermal coupling (electromagnetic radiation thermomechanochemical, ER-T-MCh). Both optical absorption and conductivity of PANI depend on its oxidation and protonation state. Therefore, the ER-T-MCh materials are able to react to the surroundings properties (pH, redox potential) becoming a smart (electromagnetic radiation thermomechanochemical) (sER-T-MCh) material. The volume changes of the sER-T-MCh materials are reversible since the size and shape is recovered by cooling. No noticeable damage was observed after several cycles. The mechanical properties of the composite materials can be set by changing the hydrogel matrix. Four methods of material fabrication are described.Fil: Riberi, Kevin SebastiĂĄn. Universidad Nacional de RĂo Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Bongiovanni Abel, Silvestre Manuel. Universidad Nacional de CĂłrdoba; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; ArgentinaFil: Martinez, MarĂa Victoria. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; Argentina. Universidad Nacional de RĂo Cuarto; ArgentinaFil: Molina, MarĂa Alejandra. Universidad Nacional de RĂo Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; ArgentinaFil: Rivarola, Claudia Rosana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; Argentina. Universidad Nacional de RĂo Cuarto; ArgentinaFil: Acevedo, Diego Fernando. Universidad Nacional de RĂo Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; ArgentinaFil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Cuello, Emma Antonia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; Argentina. Universidad Nacional de RĂo Cuarto; ArgentinaFil: Gramaglia, Romina Andrea. Universidad Nacional de RĂo Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Barbero, CĂ©sar Alfredo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; Argentina. Universidad Nacional de RĂo Cuarto; Argentin
Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite
A nanocomposite is fabricated by formation of a conductive polymer, using in situ oxidative polymerization, inside a thermosensitive crosslinked hydrogel. FE-SEM micrographs show the nanometric domains of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix based on cross linked poly(N-isopropylacrylamide) (PNIPAm). The thermosensitive properties of PNIPAm and copolymers with 2-acrylamido-2-methyl propane sulfonic acid (AMPS) are not affected by the presence of conductive polymer nanoparticles. The incorporation of PANI improves the mechanical properties of the hydrogel allowing it to swell up to 30,000% without breaking. Since the conductive polymer absorbs strongly microwave radiation at pH 4, PANI is not conductive and the nanocomposite becomes insensitive to microwaves. However, using a pH insensitive conductive polymer (polypyrrole, PPy) in the nanocomposite makes it sensitive to microwaves at all pH values. The nanocomposite is used in a chemomechanical actuator where drug release is driven remotely by microwave irradiation. Since the PNIPAm-co-2%AMPS/PANI nanocomposite is soft and electronically conductive, could be used as pressure/force sensor. It is shown that a compressive force applied on a cylinder of that nanocomposite increases the conductivity of material. Additionally a switch is built which turns off upon microwave irradiation. Therefore, the nanocomposites are potential candidates for different technological applications, such as: a force/pressure electrical sensor, a drug delivery device driven remotely by microwaves, pH or temperature electrical switches and an electric switch driven by microwaves.Fil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Molina, MarĂa Alejandra. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Rivarola, Claudia Rosana. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Barbero, CĂ©sar Alfredo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
Mechanical and physicochemical behavior of a 3D hydrogel scaffold during cell growth and proliferation
Some of the essential properties for cellular scaffolding are the capability to maintain the three-dimensional (3D) structure, good adhesion, and adequate elastic modulus during cell growth, migration, and proliferation. Biocompatible synthetic hydrogels are commonly used as cellular scaffolds because they can mimic the natural extracellular matrices (ECMs). However, it is possible that the physicochemical and mechanical behavior of the scaffold changes during cell proliferation and loses the scaffold properties but this is rarely monitored. In this work, the physicochemical and mechanical properties of a macroporous soft material based on poly(N-isopropyl acrylamide) (PNIPAM) have been studied during a period of 75 days at culture condition while bovine fetal fibroblasts (BFF) were grown within the matrix. The interconnected macroporous hydrogel was obtained by cryogelation at -18 °C. The swelling capacity of the scaffold was not altered during cell proliferation but changes in the mechanical properties were observed, beginning with the high elastic modulus (280 kPa) that progressively decreased until mechanical stability (40 kPa) was achieved after 20 culture days. It was observed that the matrix-cell interactions together with collagen production favor normal cellular processes such as cell morphology, adhesion, migration, and proliferation. Therefore, the observed behavior of macroporous PNIPAM as a 3D scaffold during cell growth indicates that the soft matrix is cytocompatible for a long time and preserves the suitable properties that can be applied in tissue engineering and regenerative medicine.Fil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Capella, Virginia. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; ArgentinaFil: Liaudat, Ana Cecilia. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; ArgentinaFil: Bosch, Pablo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; ArgentinaFil: Barbero, CĂ©sar Alfredo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; ArgentinaFil: Rodriguez, Nancy. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; ArgentinaFil: Rivarola, Claudia Rosana. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; Argentin
Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
Nanocomposites are made by loading a conductive polymer (polyaniline, PANI) inside a thermosensitive hydrogel matrix (poly(N-isopropylacrylamide)-co-(2-acrylamido-2-methylpropane sulfonic acid), HG). The composites were obtained by two loading methods: i) in-situ polymerization of aniline inside the hydrogel matrix (ISP) and ii) by swelling of hydrogel in a true solution (SIS) of PANI (base) in N-methylpyrrolidone. Even though the composites have similar chemical composition, scanning electronic microscopy (SEM) shows different morphologies for each material obtained. ISP produces a material with segregated nanodomains of PANI inside HG, building a true nanocomposite (NC). On the other hand, SIS seems to create a semi-interpenetrated (semi-IPN) network of PANI inside the HG. The swelling capacity and volume phase transition temperature (VPTT) of composites are also affected by the loading methods. The segregated nanodomains of PANI in the NC do not affect the thermosensitivity of HG, while the PANI chains are directly interacting with the HG chains in the semi-IPN, affecting the VPTT. The swelling capacity of NC is of %Sweq = 6500 while the semi-IPN is of %Sweq = 8600. Both of them are lower than the one of pure HG (%Sweq = 11,000). The elastic module of both materials is higher than HG. The states of water analyzed by DSC show a high hydrophobic character inside the composite. The amount of water interacting with HG chains decreases with the presence of PANI. Both composites show electronic conductivity which changes when pressure is applied on them. However the NC shows a larger gauge factor. Such property could be applied in a pressure sensor. Additionally, the thermal sensitivity of the matrix is coupled with the electronic conductivity of PANI, allowing to build an electric switch controlled by the temperature.Fil: Martinez, MarĂa Victoria. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Bongiovanni Abel, Silvestre Manuel. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Miras, Maria Cristina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Rivarola, Claudia Rosana. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Barbero, CĂ©sar Alfredo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
Effect of functional groups on physicochemical and mechanical behavior of biocompatible macroporous hydrogels
The increasing interest in studying the properties of biocompatible hydrogels is due to their possible applications in bioengineering. Properties of hydrogels based on N-isopropylacrylamide (NIPAM) and the effect caused by copolymerization with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) or N-acryloyl-tris-(hydroxymethyl)aminomethane (HMA) were investigated. Hydrogels were synthesized by free radical polymerization at room temperature or by cryogelation at - 18°C. The presence of different functional groups (isopropyl, - SO3-, and -OH) and thermal conditions of polymerization affected the morphology and physicochemical and mechanical properties of hydrogels. Scanning electron microscopy (SEM) revealed the presence of macropores created by cryogelation with the morphology of the pores dependent on chemical composition of the copolymer. Poly(NIPAM-co-HMA) has spherical and isolated pores, whereas PNIPAM and Poly(NIPAM-co-AMPS) showed ellipsoidal interconnected pores. Three different water states were detected by differential scanning calorimetry (DSC), indicating the presence of nano- and macropores. Elastic modulus (E) was measured to be around 3-6.5 kPa by uniaxial compression. However, higher E values (20-30 kPa) and an anisotropic mechanical response were observed for PNIPAM and PNIPAM-co-AMPS hydrogels with ellipsoidal pores, a behavior that is almost similar to that of cartilage and bone tissues. Cytocompatibility studies using bovine fibroblasts (BFs) indicated good cell attachment and proliferation on PNIPAM-based hydrogel surfaces, although initially the cell adhesion varied depending on the composition of the surface. These hydrogels could be an interesting choice for the development of scaffolds in tissue engineering.Fil: Rivero, Rebeca Edith. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Alustiza, Fabrisio Eduardo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Rodriguez, Nancy. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Bosch, Pablo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Miras, Maria Cristina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Rivarola, Claudia Rosana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Barbero, CĂ©sar Alfredo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentin
Physicochemical properties of ionic and non-ionic biocompatible hydrogels in water and cell culture conditions: Relation with type of morphologies of bovine fetal fibroblasts in contact with the surfaces
Cationic, anionic and non-ionic hydrogels having acrylamide polymer backbones were synthesized via free radical polymerization with N,N-methylenebisacrylamide (BIS) as crosslinker. The chemical structures of the hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Physicochemical properties such as swelling kinetic, maximum swelling capacity, volume phase transition temperature (VPTT) and wettability (static water contact angle) of hydrogels swollen in aqueous and cell culture medium, at room and cell culture temperatures were studied. In order to correlate the surface properties of the hydrogels and cellular adhesivity of bovine fetal fibroblasts (BFFs), cellular behaviour was analyzed by inverted fluorescence optical microscopy and atomic force microscopy (AFM). MTT assay demonstrated that the number of viable cells in contact with hydrogels does not significantly change in comparison to a control surface. Flattened and spindle-shaped cells and cell spheroids were the adopted morphologies during first days of culture on different hydrogels. Cell spheroids were easily obtained during the first 5Â days of culture in contact with PNIPAM-co-20%HMA (poly (N-isopropylacrylamide-co-20%N-acryloyl-tris-(hydroxymethyl)aminomethane)) hydrogel surface. After 15Â days of culture all hydrogels showed high adhesion and visual proliferation. According to obtained results, non-ionic and hydrophilic surfaces with moderated wettability induce the formation of BFFs cell spheroids. These hydrogel surfaces could be used in clinical and biochemical treatments at laboratory level to cell growth and will allow generating the base for future biotechnologic platform.Fil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Aluztiza, Fabricio. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Capella, Virginia. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Liaudat, Ana Cecilia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Rodriguez, Nancy. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Bosch, Pablo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Barbero, CĂ©sar Alfredo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Rivarola, Claudia Rosana. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentin
Interaction between hyaluronic acid semi-interpenetrated hydrogel with bull spermatozoa: Studies of sperm attachmentârelease and sperm quality
The study of living systems in contact with biocompatible synthetic hydrogels is developing. The authorsâ group is the first to propose use of polymeric materials to accomplish sperm selection process by attachment of bull sperm to hydrogel surfaces, this being a crucial step for successful assisted reproductive techniques (ARTs). Surfaces based on poly(N-isopropylacrylamide) hydrogels (PNIPAM) and ionic and neutral copolymers are synthetized. Their physicochemical properties in aqueous and culture medium are related to the percentage of attachment and subsequent release of bull spermatozoa from the hydrogel surface. High attaching capacity (30â45%) of sperm on cationic and neutral surfaces is mainly observed, however, sperm detachment from the hydrogel using traditional induction processes (i.e., sperm capacitation) is not significant. Therefore, PNIPAM-co-20%-N-Tris(hydroxymethyl)methyl acrylamide (PNIPAM-HMA) hydrogel surface is semi-interpenetrated with hyaluronic acid (HA). In this case, 50% of spermatozoa are attached to PNIPAM-HMA-HA hydrogel and after treatment with hyaluronidase, 47% of them are released. Collected sperm show acceptable characteristics of progressive motility (70% with score 4 for vigor), high viability, and cytoplasmic membrane integrity. Noteworthy, the study of the interaction of hydrogel surface/spermatozoa can be extended to human and other mammalian species, in order to provide advanced alternatives for gamete selection for ARTs.Fil: Blois, DamiĂĄn AndrĂ©s. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Liaudat, Ana Cecilia. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Capella, Virginia. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Morilla, Gricelda Dolinda. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Broglia, Martin Federico. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Barbero, CĂ©sar Alfredo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; ArgentinaFil: Rodriguez, Nancy. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Bosch, Pablo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de BiotecnologĂa Ambiental y Salud - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de BiotecnologĂa Ambiental y Salud; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Rivarola, Claudia Rosana. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂas EnergĂ©ticas y Materiales Avanzados; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentin
In vitro toxicity evaluation of hydrogel-carbon nanotubes composites on intestinal cells
Composite materials based on carbon nanotubes (CNT) and polymeric hydrogels have become the subject matter of major interest for use as carriers in drug delivery research. The aim of this study was to evaluate the in vitro cytotoxicity of the hydrogelâcarbon nanotubeâchitosan (hydrogelâCNTâCH) composites on intestinal cells. Oxidized CNT were wrapped with chitosan (CH), Fourier transform infrared (FT-IR) analysis suggest that oxidized CNT interact with CH. Transmission electron microscopy (TEM) images show a CH layer lying around CNT. Chitosan wrapped CNT were incorporated to poly (acrylamide-co-acrylic acid) hydrogels. Swelling behavior in buffers at different pH were evaluated and revealed a significantly lower swelling when it is exposed to a acid buffer solution (pH 2.2). Mechanical properties were evaluated by measurements of elasticity and the material with CNT showed better mechanical properties. The incorporation and liberation of Egg Yolk Immunoglobulin from hydrogelâCNTâCH were also assessed and it revealed an improved performance. To evaluate the effect of these nanocomposites on cellular redox balance, intestinal cells were exposed to hydrogelâCNTâCH composites and antioxidant enzymes were assessed. Cytotoxicity and apoptosis were also evaluated. HydrogelâCNTâCH composites induce no oxidative stress and there were no evidence of cytotoxicity or cell death. These preliminary findings suggest that hydrogelâCNTâCH composites show improved properties and good biocompatibility in vitro making these biomaterials promising systems for drug delivery purposes.Fil: Bellingeri, Romina Valeria. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Anatomia Animal. Laboratorio de BiotecnologĂa Animal; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Alustiza, Fabrisio Eduardo. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Anatomia Animal. Laboratorio de BiotecnologĂa Animal; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Picco, Natalia Yanina. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Anatomia Animal. Laboratorio de BiotecnologĂa Animal; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Acevedo, Diego Fernando. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Molina, MarĂa Alejandra. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Freie Universitat Berlin,; Alemania. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Rivero, Rebeca Edith. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Grosso, Maria Carolina. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Anatomia Animal. Laboratorio de BiotecnologĂa Animal; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Motta, Carlos. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Anatomia Animal. Laboratorio de BiotecnologĂa Animal; ArgentinaFil: Barbero, CĂ©sar Alfredo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de QuĂmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Vivas, Adriana. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Anatomia Animal. Laboratorio de BiotecnologĂa Animal; Argentin