45 research outputs found

    Late-Time Photometry of Type Ia Supernova SN 2012cg Reveals the Radioactive Decay of 57^{57}Co

    Full text link
    Seitenzahl et al. (2009) have predicted that roughly three years after its explosion, the light we receive from a Type Ia supernova (SN Ia) will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain 57Co → 57Fe^{57}{\rm Co}~\to~^{57}{\rm Fe}, instead of positrons from the decay chain 56Co → 56Fe^{56}{\rm Co}~\to~^{56}{\rm Fe} that dominates the SN light at earlier times. Using the {\it Hubble Space Telescope}, we followed the light curve of the SN Ia SN 2012cg out to 10551055 days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of 57^{57}Co, offering evidence that 57^{57}Co is produced in SN Ia explosions. However, the data are also consistent with a light echo ∼14\sim14 mag fainter than SN 2012cg at peak. Assuming no light-echo contamination, the mass ratio of 57^{57}Ni and 56^{56}Ni produced by the explosion, a strong constraint on any SN Ia explosion model, is 0.043−0.011+0.0120.043^{+0.012}_{-0.011}, roughly twice Solar. In the context of current explosion models, this value favors a progenitor white dwarf with a mass near the Chandrasekhar limit.Comment: Updated to reflect the final version published by ApJ. For a video about the paper, see https://youtu.be/t3pUbZe8wq

    Uniformity of V minus Near Infrared Color Evolution of Type Ia Supernovae, and Implications for Host Galaxy Extinction Determination

    Full text link
    From an analysis of SNe 1972E, 1980N, 1981B, 1981D, 1983R, 1998bu, 1999cl, and 1999cp we find that the intrinsic V-K colors of Type Ia SNe with multi-color light curve shape (MLCS) parameter -0.4 < Delta < +0.2 suggest a uniform color curve. V-K colors become bluer linearly with time from roughly one week before B-band maximum until one week after maximum, after which they redden linearly until four weeks after maximum. V-H colors exhibit very similar color evolution. V-J colors exhibit slightly more complex evolution, with greater scatter. The existence of V minus near infrared color relations allows the construction of near infrared light curve templates that are an improvement on those of Elias et al. (1985). We provide optical BVRI and infrared JHK photometry of the Type Ia supernovae 1999aa, 1999cl, and 1999cp. SN 1999aa is an overluminous "slow decliner" (with Delta = -0.47 mag). SN 1999cp is a moderately bright SN unreddened in its host. SN 1999cl is extremely reddened in its host. The V minus near infrared colors of SN 1999cl yield A_V = 2.01 +/- 0.11 mag. This leads to a distance for its host galaxy (M 88) in agreement with other distance measurements for members of the Virgo cluster.Comment: 57 pages, 13 postscript figures, to appear in the August 20, 2000, issue of the Astrophysical Journal. Contains updated references and a number of minor corrections dealt with when page proofs were correcte

    Optical and Infrared Photometry of the Type Ia Supernovae 1999da, 1999dk, 1999gp, 2000bk, and 2000ce

    Get PDF
    We present BVRI photometry of the Type Ia supernovae 1999da, 1999dk, 1999gp, 2000bk, and 2000ce, plus infrared photometry of three of these. These objects exhibit the full range of decline rates of Type Ia supernovae. Combined optical and infrared data show that families of V - infrared color curves can be used to derive the host extinction (A_V) of these objects. Existing data do not yet allow us to construct these loci for all color indices and supernova decline rates, but the V-K color evolution is sufficiently uniform that it allows the determination of host extinction over a wide range of supernova decline rates to an accuracy of roughly +/- 0.1 mag. We introduce a new empirical parameter, the mean I-band flux 20 to 40 days after maximum light, and show how it is directly related to the decline rate.Comment: 53 pages, 18 figures, accepted for publication in the Astronomical Journal (scheduled for the September 2001 issue

    Supernova Cosmology and the ESSENCE project

    Full text link
    The proper usage of Type Ia supernovae (SNe Ia) as distance indicators has revolutionized cosmology, and added a new dominant component to the energy density of the Universe, dark energy. Following the discovery and confirmation era, the currently ongoing SNe Ia surveys aim to determine the properties of the dark energy. ESSENCE is a five year ground-based supernova survey aimed at finding and characterizing 200 SNe Ia in the redshift domain z=[0.2-0.8]. The goal of the project is to put constraints on the equation of state parameter, w, of the dark energy with an accuracy of <10%. This paper presents these ongoing efforts in the context of the current developments in observational cosmology.Comment: Submitted to EPS1

    Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Two Years

    Get PDF
    We present the results of spectroscopic observations of targets discovered during the first two years of the ESSENCE project. The goal of ESSENCE is to use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2 < z < 0.8) to place constraints on the equation of state of the Universe. Spectroscopy not only provides the redshifts of the objects, but also confirms that some of the discoveries are indeed SNe Ia. This confirmation is critical to the project, as techniques developed to determine luminosity distances to SNe Ia depend upon the knowledge that the objects at high redshift are the same as the ones at low redshift. We describe the methods of target selection and prioritization, the telescopes and detectors, and the software used to identify objects. The redshifts deduced from spectral matching of high-redshift SNe Ia with low-redshift SNe Ia are consistent with those determined from host-galaxy spectra. We show that the high-redshift SNe Ia match well with low-redshift templates. We include all spectra obtained by the ESSENCE project, including 52 SNe Ia, 5 core-collapse SNe, 12 active galactic nuclei, 19 galaxies, 4 possibly variable stars, and 16 objects with uncertain identifications.Comment: 38 pages, 9 figures (many with multiple parts), submitted to A

    CfA4: Light Curves for 94 Type Ia Supernovae

    Full text link
    We present multi-band optical photometry of 94 spectroscopically-confirmed Type Ia supernovae (SN Ia) in the redshift range 0.0055 to 0.073, obtained between 2006 and 2011. There are a total of 5522 light curve points. We show that our natural system SN photometry has a precision of roughly 0.03 mag or better in BVr'i', 0.06 mag in u', and 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of ~0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al (in prep.). This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well-characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SN Ia is now sufficiently large to remove most of the statistical sampling error from the dark energy error budget. But pursuing the dark-energy systematic errors by determining highly-accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SN Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.Comment: 43 page
    corecore