271 research outputs found
Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86
Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations
Process tomography of ion trap quantum gates
A crucial building block for quantum information processing with trapped ions
is a controlled-NOT quantum gate. In this paper, two different sequences of
laser pulses implementing such a gate operation are analyzed using quantum
process tomography. Fidelities of up to 92.6(6)% are achieved for single gate
operations and up to 83.4(8)% for two concatenated gate operations. By process
tomography we assess the performance of the gates for different experimental
realizations and demonstrate the advantage of amplitude--shaped laser pulses
over simple square pulses. We also investigate whether the performance of
concatenated gates can be inferred from the analysis of the single gates
Maintaining exercise and healthful eating in older adults: The SENIOR project II: Study design and methodology
The Study of Exercise and Nutrition in Older Rhode Islanders (SENIOR) Project II is an intervention study to promote the maintenance of both exercise and healthful eating in older adults. It is the second phase of an earlier study, SENIOR Project I, that originally recruited 1277 community-dwelling older adults to participate in behavior-specific interventions designed to increase exercise and/or fruit and vegetable consumption. The general theoretical framework for this research is the Transtheoretical Model (TTM) of Health Behavior Change. The current intervention occurs over a 48-month period, using a manual, newsletters, and phone coaching calls. Annual assessments collect standardized data on behavioral outcomes (exercise and diet), TTM variables (stage of change and self-efficacy), psychosocial variables (social support, depression, resilience, and life satisfaction), physical activity and functioning (SF-36, Up and Go, Senior Fitness Test, and disability assessment), cognitive functioning (Trail Making Test and Forward and Backward Digit Span), physical measures (height, weight, and waist circumference), and demographics. The SENIOR Project II is designed to answer the following question as its primary objective: (1) Does an individualized active-maintenance intervention with older adults maintain greater levels of healthful exercise and dietary behaviors for 4 years, compared to a control condition? In addition, there are two secondary objectives: (2) What are the psychosocial factors associated with the maintenance of health-promoting behaviors in the very old? (3) What are the effects of the maintenance of health-promoting behaviors on reported health outcomes, psychosocial measures, anthropometrics, and cognitive status
Evaluation of spectra VRE, a new chromogenic agar medium designed to screen for vancomycin-resistant Enterococcus faecalis and Enterococcus faecium
Spectra VRE (Remel, Lenexa, KS) is a chromogenic medium designed to recover and differentiate vancomycin-resistant Enterococcus faecium and Enterococcus faecalis (VRE). This medium was compared to bile esculin azide agar (BEAV) and was 98.2% sensitive and 99.3% specific compared to BEAV, which was 87.6% sensitive and 87.1% specific at 24 h
Robust entanglement
It is common belief among physicists that entangled states of quantum systems
loose their coherence rather quickly. The reason is that any interaction with
the environment which distinguishes between the entangled sub-systems collapses
the quantum state. Here we investigate entangled states of two trapped Ca
ions and observe robust entanglement lasting for more than 20 seconds
Realization of the quantum Toffoli gate with trapped ions
Algorithms for quantum information processing are usually decomposed into
sequences of quantum gate operations, most often realized with single- and two-
qubit gates[1]. While such operations constitute a universal set for quantum
computation, gates acting on more than two qubits can simplify the
implementation of complex quantum algorithms[2]. Thus, a single three-qubit
operation can replace a complex sequence of two-qubit gates, which in turn
promises faster execution with potentially higher Fidelity. One important
three-qubit operation is the quantum Toffoli gate which performs a NOT
operation on a target qubit depending on the state of two control qubits. Here
we present the first experimental realization of the quantum Toffoli gate in an
ion trap quantum computer. Our implementation is particular effcient as we
directly encode the relevant logic information in the motion of the ion string.
[1] DiVincenzo, D. P. Two-bit gates are universal for quantum computation.
cond-mat/9407022, Phys.Rev. A 51, 1015-1022 (1995). [2] Chiaverini, J. et al.
Realization of quantum error correction. Nature 432, 602-605 (2004).Comment: 11 pages, 2 figure
Experimental Quantum Teleportation of a Two-Qubit Composite System
Quantum teleportation, a way to transfer the state of a quantum system from
one location to another, is central to quantum communication and plays an
important role in a number of quantum computation protocols. Previous
experimental demonstrations have been implemented with photonic or ionic
qubits. Very recently long-distance teleportation and open-destination
teleportation have also been realized. Until now, previous experiments have
only been able to teleport single qubits. However, since teleportation of
single qubits is insufficient for a large-scale realization of quantum
communication and computation2-5, teleportation of a composite system
containing two or more qubits has been seen as a long-standing goal in quantum
information science. Here, we present the experimental realization of quantum
teleportation of a two-qubit composite system. In the experiment, we develop
and exploit a six-photon interferometer to teleport an arbitrary polarization
state of two photons. The observed teleportation fidelities for different
initial states are all well beyond the state estimation limit of 0.40 for a
two-qubit system. Not only does our six-photon interferometer provide an
important step towards teleportation of a complex system, it will also enable
future experimental investigations on a number of fundamental quantum
communication and computation protocols such as multi-stage realization of
quantum-relay, fault-tolerant quantum computation, universal quantum
error-correction and one-way quantum computation.Comment: 16pages, 4 figure
- …