54 research outputs found

    Principled Explanations in Comparative Biomusicology – Toward a Comparative Cognitive Biology of the Human Capacities for Music and Language

    Get PDF
    The current thesis tackles the question “Why is music the way it is?” within a comparative biomusicology framework by focusing on musical syntax and its relation to syntax in language. Comparative biomusicology integrates different comparative approaches, biological frameworks as well as levels of analysis in cognitive science, and puts forward principled explanations, regarding cognitive systems as different instances of the same principles, as its central research strategy. The main goal is to provide a preliminary answer to this question in form of hypotheses about neurocognitive mechanisms, i.e., cognitive and neural processes, underlying a core function of syntactic computation in language and music, i.e., mapping hierarchical structure and temporal sequence. In particular, the relationship between language and music is discussed on the basis of a top-down approach taking syntax as combinatorial principles and a bottom-up approach taking neural structures and operations as implementational principles. On the basis of the top-down approach, the thesis identifies computational problems of musical syntax, cognitive processes and neural correlates of music syntactic processing, and the relationship to language syntax and syntactic processing. The neural correlates of music syntactic processing are investigated by ALE meta-analyses. The bottom-up approach then studies the relationship between language and music on the basis of neural processes implemented in the cortico-basal ganglia-thalamocortical circuits. The main result of the current thesis suggests that the relationship between language and music syntactic processing can be explained in terms of the same neurocognitive mechanisms with different expressions on the motor-to-cognitive gradient. The current thesis, especially its bottom-up approach, opens up a possible way going toward comparative cognitive biology, i.e., a comparative approach to cognitive systems with a greater emphasis on the biology

    Why musical hierarchies?

    Full text link
    Comentari a l'article: Savage, P., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. (2021). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44, E59. Postprint: https://centaur.reading.ac.uk/95527/ . doi:10.1017/S0140525X20000333[eng] Credible signaling may have provided a selection pressure for producing and discriminating increasingly elaborate proto-musical signals. But, why evolve them to have hierarchical structure? We argue that the hierarchality of tonality and meter is a byproduct of domain-general mechanisms evolved for reasons other than credible signaling

    Syntax in language and music: what is the right level of comparison?

    Get PDF
    It is often claimed that music and language share a process of hierarchical structure building, a mental "syntax." Although several lines of research point to commonalities, and possibly a shared syntactic component, differences between "language syntax" and "music syntax" can also be found at several levels: conveyed meaning, and the atoms of combination, for example. To bring music and language closer to one another, some researchers have suggested a comparison between music and phonology ("phonological syntax"), but here too, one quickly arrives at a situation of intriguing similarities and obvious differences. In this paper, we suggest that a fruitful comparison between the two domains could benefit from taking the grammar of action into account. In particular, we suggest that what is called "syntax" can be investigated in terms of goal of action, action planning, motor control, and sensory-motor integration. At this level of comparison, we suggest that some of the differences between language and music could be explained in terms of different goals reflected in the hierarchical structures of action planning: the hierarchical structures of music arise to achieve goals with a strong relation to the affective-gestural system encoding tension-relaxation patterns as well as socio-intentional system, whereas hierarchical structures in language are embedded in a conceptual system that gives rise to compositional meaning. Similarities between music and language are most clear in the way several hierarchical plans for executing action are processed in time and sequentially integrated to achieve various goals

    Relentless Placoid Chorioretinitis: A Case Series of Successful Tapering of Systemic Immunosuppressants Achieved with Adalimumab

    Get PDF
    Background: Adalimumab, a human anti-tumor necrosis factor-ɑ monoclonal antibody, was recently reported to be effective in lowering the risk of recurrence of noninfectious uveitis. This is the first case series of adalimumab administrations for relentless placoid chorioretinitis (RPC) patients. Case Presentation: We report 2 cases of RPC where successful treatments were achieved with adalimumab. A 34-year-old woman developed conjunctival hyperemia, mild iridocyclitis, and multiple atrophic retinal lesions, along with exudative changes that were widespread from the posterior pole to peripheral retina in both eyes. The diagnosis of RPC was made based on the characteristic recurrences of choroiditis despite systemic corticosteroid and cyclosporine. Adalimumab therapy was introduced to the patient, and thereafter no recurrence was observed while tapering the immunosuppressive agents. The second case was a 22-year-old man with visual deterioration in both eyes who exhibited widespread multiple chorioretinal atrophic lesions. We diagnosed the case as RPC based on characteristic clinical findings and recurring chorioretinitis during tapering of systemic corticosteroids. Adalimumab therapy was administrated, and immunosuppressant dosage was successfully reduced without any recurrences. Conclusions: In the current two RPC cases, adalimumab was quite effective and useful to reduce the dosages of systemic immunosuppressants. Further study is necessary to confirm the effectiveness of adalimumab in RPC patients

    Intra- and inter-brain coupling and activity dynamics during improvisational music therapy with a person with dementia: an explorative EEG-hyperscanning single case study

    Get PDF
    ObjectiveReal-life research into the underlying neural dynamics of improvisational music therapy, used with various clinical populations, is largely lacking. This single case study explored within-session differences in musical features and in within- and between-brain coupling between a Person with Dementia (PwD) and a music therapist during a music therapy session.MethodsDual-EEG from a music therapist and a PwD (male, 31 years) was recorded. Note density, pulse clarity and synchronicity were extracted from audio-visual data. Three music therapists identified moments of interest and no interest (MOI/MONI) in two drum improvisations. The Integrative Coupling Index, reflecting time-lagged neural synchronization, and musical features were compared between the MOI and MONI.ResultsBetween-brain coupling of 2 Hz activity was increased during the MOI, showing anteriority of the therapist’s neural activity. Within-brain coupling for the PwD was stronger from frontal and central areas during the MOI, but within-brain coupling for the therapist was stronger during MONI. Differences in musical features indicated that both acted musically more similar to one another during the MOI.ConclusionWithin-session differences in neural synchronization and musical features highlight the dynamic nature of music therapy.SignificanceThe findings contribute to a better understanding of social and affective processes in the brain and (interactive) musical behaviors during specific moments in a real-life music therapy session. This may provide insights into the role of such moments for relational-therapeutic processes

    Spectral Lag Relations in GRB Pulses Detected with HETE-2

    Full text link
    Using a pulse-fit method, we investigate the spectral lags between the traditional gamma-ray band (50-400 keV) and the X-ray band (6-25 keV) for 8 GRBs with known redshifts (GRB 010921, GRB 020124, GRB 020127, GRB 021211, GRB 030528, GRB 040924, GRB 041006, GRB 050408) detected with the WXM and FREGATE instruments aboard the HETE-2 satellite. We find several relations for the individual GRB pulses between the spectral lag and other observables, such as the luminosity, pulse duration, and peak energy (Epeak). The obtained results are consistent with those for BATSE, indicating that the BATSE correlations are still valid at lower energies (6-25 keV). Furthermore, we find that the photon energy dependence for the spectral lags can reconcile the simple curvature effect model. We discuss the implication of these results from various points of view.Comment: 13 pages, 9 figures, accepted for the publication in PASJ (minor corrections

    New Approach to Teaching Japanese Pronunciation in the Digital Era - Challenges and Practices

    Get PDF
    Pronunciation has been a black hole in the L2 Japanese classroom on account of a lack of class time, teacher\u2019s confidence, and consciousness of the need to teach pronunciation, among other reasons. The absence of pronunciation instruction is reported to result in fossilized pronunciation errors, communication problems, and learner frustration. With an intention of making a contribution to improve such circumstances, this paper aims at three goals. First, it discusses the importance, necessity, and e ectiveness of teaching prosodic aspects of Japanese pronunciation from an early stage in acquisition. Second, it shows that Japanese prosody is challenging because of its typological rareness, regardless of the L1 backgrounds of learners. Third and finally, it introduces a new approach to teaching L2 pronunciation with the goal of developing L2 comprehensibility by focusing on essential prosodic features, which is followed by discussions on key issues concerning how to implement the new approach both inside and outside the classroom in the digital era

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The evolution of hierarchical structure building capacity for language and music: a bottom-up perspective

    No full text
    A central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music
    corecore