65 research outputs found
Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression
Glaucoma, a disease characterized by progressive optic nerve degeneration, can be prevented through timely diagnosis and treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected glaucoma cases and modifies penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-associated myocilin variant. In the unselected glaucoma population, individuals in the top PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced disease (P = 3.6 × 10). This glaucoma PRS will facilitate the development of a personalized approach for earlier treatment of high-risk individuals, with less intensive monitoring and treatment being possible for lower-risk groups
Sensorless commutation of a two-phase linear machine for marine renewable power generation
A sensorless scheme is presented for a two-phase permanent-magnet linear machine targeted for use in marine wave-power generation. This is a field where system reliability is a key concern. The scheme is able to extract the effective inductance and back-emf of the machine's phases simultaneously from measurements of the current ripple present on the power electronic converter. These measurements can then be used to estimate position. An enhancement to the scheme in the presence of spatially-varying mutual inductance between phases allows more accurate and reliable tracking from indutance-based measurements than would otherwise be expected. This scheme is able to operate at any speed including, critically, when stationary. Experimental results show promise for the scheme, although some work to reduce the level of noise would be desirable. © 2013 IEEE
Dynamic test rig for linear generators intended for wave-power applications
A linear generator test rig that can provide realistic emulation of wave-float hydrodynamics and varying sea states is presented in this paper. Such a test rig is extremely useful for the development of power take-off algorithms prior to expensive deployment at sea. The test rig is discussed in the context of other potential solutions and existing test rigs, with the decisions that led to its conception highlighted. The proposed test rig has been built and the results from initial tests are presented. These tests confirm the test rig's dynamic emulation capability and set the scene for future, more adventurous, testing
Thermal modelling of a tubular linear machine for marine renewable generation
A lumped parameter thermal model has been constructed for a tubular linear machine that has been designed for use in a marine environment. It shows good correlation to both steady state and transient experimental tests on the machine. The model has been developed for a stationary machine in a laboratory environment - the modelling techniques used and enhancements to enable the application of the model directly to marine scenarios are discussed
Recommended from our members
Ray tracing and absorption of electron cyclotron waves in the L-2 stellarator
The absorption of electron cyclotron waves in L-2 stellarator plasmas has been investigated by adapting the RAYS geometrical optics code developed at Oak Ridge National Laboratory to the parameters of L-2. Two heating schemes were considered: Low-field launching of the ordinary wave at the fundamental resonance and low-field launching of the extraordinary wave at the second harmonic. Significant power absorption (up to 100%) of the extraordinary mode at the second harmonic resonance was obtained. A multipass absorption model was used to estimate the contribution to plasma heating of the power that remains after the first pass which is subsequently reflected from the vessel walls. Finally, results obtained with the RAYS code and with a code developed at the Institute of Automation and Electrometry were compared and found to be in good agreement. 6 refs., 4 figs
- …