188 research outputs found

    Spectroscopy and Interferometry of the Winds of Luminous Blue Variables

    Get PDF
    Massive stars are rare, but emit most of the light we observe in the Universe and create many of the heavy elements. New observational approaches and long time-series are utilized in order to examine the basic observable properties of the stars and the mass lost during their lifetimes. In order to study the winds and the long-term changes of the stars, hot stars with some of the strongest winds (the luminous blue variables) were studied in detail with optical spectroscopy and photometry. A 25-year survey on the prototype P Cygni is presented, where the long-term changes are documented for many parameters that have not been examined before. In addition, we present a detailed study of the H-band emitting region through interferometric imaging with the CHARA Array as well as spectrophotometry. A detailed study of the Hα line variability of the LBV η Carinae near its recent periastron is presented. The LBV candidate HDE 326823 is found to be a binary system with variability driven by the close binary companion and Roche lobe overflow. Finally, I present a three-year study of many LBVs in the Milky Way Galaxy and Magellanic Clouds for a statistically significant survey of the long-term variability properties of these rare stars as a population. Future studies of LBV winds are outlined, as well as a short discussion of Georgia State University’s Hard Labor Creek Observatory for these types of studies

    BRITE-Constellation reveals evidence for pulsations in the enigmatic binary η\eta Carinae

    Full text link
    η\eta Car is a massive, eccentric binary with a rich observational history. We obtained the first high-cadence, high-precision light curves with the BRITE-Constellation nanosatellites over 6 months in 2016 and 6 months in 2017. The light curve is contaminated by several sources including the Homunculus nebula and neighboring stars, including the eclipsing binary CPD−-59∘^\circ2628. However, we found two coherent oscillations in the light curve. These may represent pulsations that are not yet understood but we postulate that they are related to tidally excited oscillations of η\eta Car's primary star, and would be similar to those detected in lower-mass eccentric binaries. In particular, one frequency was previously detected by van Genderen et al. and Sterken et al. through the time period of 1974 to 1995 through timing measurements of photometric maxima. Thus, this frequency seems to have been detected for nearly four decades, indicating that it has been stable in frequency over this time span. These pulsations could help provide the first direct constraints on the fundamental parameters of the primary star if confirmed and refined with future observations.Comment: 8 pages, 4 figures, accepted to MNRA

    Using CHIRON Spectroscopy to Test the Hypothesis of a Precessing Orbit for the WN4 star EZ CMa

    Full text link
    The bright WN4 star EZ CMa exhibits a 3.77 day periodicity in photometry, spectroscopy, and polarimetry but the variations in the measurements are not strictly phase-locked, exhibiting changes in reference times, amplitudes, and the shape of the variability happening over times as short as a few weeks. Recently, 137 days of contiguous, variable photometry from BRITE-Constellation was interpreted as caused either by large-scale dense wind structures modulated by rotation, or by a fast-precessing binary having a slightly shorter 3.626 day orbital period and a fast apsidal motion rate of 1315∘ yr−11315^\circ\,\text{yr}^{-1}. We aim at testing the latter hypothesis through analysis of spectroscopy and focus on the N\,{\sc v} λ 4945\lambda\,4945 line. We derive an orbital solution for the system and reject the 3.626 day period to represent the variations in the radial velocities of EZ CMa. An orbital solution with an orbital period of 3.77 days was obtained but at the cost of an extremely high and thus improbable apsidal motion rate. Our best orbital solution yields a period of 3.751±0.0013.751\pm0.001\,days with no apsidal motion. We place our results in the context of other variability studies and system properties. While we cannot fully reject the precessing binary model, we find that the corotating interaction region (CIR) hypothesis is better supported by these and other data through qualitative models of CIRs.Comment: accepted to MNRA

    Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    Get PDF
    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194, and 2013b-0328). We thank Emily MacPherson (Yale) for her efforts in scheduling the observations that we have and will obtain in the coming weeks

    Stellar Diameters and Temperatures. I. Main-Sequence A, F, and G Stars

    Get PDF
    We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of ~1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~1.3 M_☉. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B – V) and (V – K) colors as well as spectral type, showing that calibration of effective temperatures with errors ~1% is now possible from interferometric angular diameters of stars
    • 

    corecore