576 research outputs found

    Why Bills Fail: Electioneering with the Legislative Agenda.

    Full text link
    For many political observers, dead-on-arrival (DOA) legislation is the epitome of a broken, dysfunctional Congress. Doomed bills such as repealing the Affordable Care Act, ending the war in Iraq, or defunding Planned Parenthood are viewed as symbolic political theater. In this project, I argue intended legislative failures are not simply used for political grandstanding. Rather, these bills are unique tools utilized by majority party legislators and their allied interest groups. The majority party strategically adds intended failures to its agenda when it most needs electoral support to win unified government. Allied interest groups consistently reward the majority party for advancing DOA legislation. As a result, these organized interests get lawmakers to adopt the intended failure as their working policy alternative. Thus, when the majority party wins unified government, the previously dead-on-arrival legislation is more likely to be enacted. More broadly, this study explains why majority parties in Congress prioritize certain bills but not others. Dead-on-arrival legislation is anomalous because it does not provide lawmakers any policy utility. For this reason, these proposals offer unique insight regarding when and why majority parties prefer extreme DOA bills or compromise legislation. By understanding legislators’ incentives for focusing on intended failures, this project examines the conditions under which the legislative agenda is used for electioneering rather than lawmaking. To develop and support my argument, I use a game-theoretic auction model, statistical methods, and a survey experiment. By focusing on dead-on-arrival bills, this project highlights how electoral considerations influence a majority party’s and its allied interest groups’ legislative strategies. Ultimately, this dissertation reframes dead-on-arrival bills as a tool strategically used for electioneering, an important source for future policy change, and an anomalous feature of the legislative process that offers unique insight into how Congress’s legislative agenda is determined.PhDPolitical ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133425/1/jgelman_1.pd

    Glioblastoma Stem Cells: A Neuropathologist's View

    Get PDF
    Glioblastoma (WHO Grade IV) is both the most common primary brain tumor and the most malignant. Advances in the understanding of the biology of the tumor are needed in order to obtain a clearer picture of the mechanisms driving these tumors. To neuropathologists, glioblastoma is a tumor that represents a complex system of migrating pleomorphic tumor cells, proliferating blood vessels, infiltrating inflammatory cells, and necrosis. This review will highlight how the glioma stem cell concept brings these elements together into a collective whole, interacting with microenvironmental influences in complex ways. Borrowing from chaos theory a vocabulary of “self organizing systems” and “complex adaptive systems” that seem useful in describing these pathologic features, a new paradigm of glioblastoma biology will be proposed that genetic changes should be understood in a three dimensional framework as they relate not only to the tumor cells themselves but also to the multicellular hierarchical unit, not isolated from, but responsive to, its local milieu. In this way we will come to better appreciate the impact our therapeutic interventions have on the regional phenotypic heterogeneity that exists within the tumor and the intercellular communications directing adaptation and progression

    Carbon monoxide consumption and production by wetland peats

    Get PDF
    Wetland peats were analyzed for their potential to consume and produce carbon monoxide (CO) under aerobic and anaerobic conditions. Kinetic and functional characteristics of anaerobic CO consumption were compared with those of methanogenesis. Inhibitors of methanogenesis and sulfate reduction decreased the rate of CO consumption by 30 and 20%, respectively, suggesting that methanogens and sulfate reducers played secondary roles in CO uptake. Low concentrations of nitrate (0.2 mM) stimulated CO uptake, while high concentrations (20 mM) were partially inhibitory. Sulfate (20 mM), ferric iron (60 μmol cm-3), and acetate (10 mM) had no effect on CO consumption. Formate and glucose (10 mM) temporarily stimulated net CO and H2 production. Aerobic incubations of previously anaerobic peat stimulated transient CO production. Kinetic analysis of anaerobic CO consumption by two sediment types (organic peat and mineral silt) showed that maximum potential uptake velocities (V(maxp)) in each sediment were similar, 1-2 nmol CO cm-3 sediment h-1, with apparent half saturation constants (K(app)) ranging from 5 to 37 nM CO. Anaerobic CO consumption may limit CO accumulation in wetland peats and sediments, thereby affecting CO emissions. Understanding the role and characteristics of wetland CO consumption may help explain current and future patterns in wetland CO dynamics. Copyright (C) 1999 Federation of European Microbiological Societies

    Implementing Interactive Voice Recognition Technology to Activate Vulnerable Patients

    Get PDF
    Purpose: To help better align the intersections of patient needs, quality of care, and cost, we implemented an automated monitoring program that aimed to reduce preventable hospital admissions for vulnerable patients. Interactive voice recognition (IVR) is a form of remote patient monitoring that enables the clinical team to intervene sooner when a patient’s symptoms worsen. The goal was to improve patient activation by having them recognize symptom exacerbation and record their responses to a weekly IVR survey which was sent to the clinical team for potential action. Methods: At a health care organization in Southern California, ninety chronic obstructive pulmonary disease (COPD) patients who were in enrolled in a self-management program completed IVR surveys based on COPD symptom zones. Patients answered the weekly surveys for 6 months and the data were transmitted to the clinical team for review and potential action. Results and Conclusion: When COPD program patients used IVR, hospital admissions decreased and a positive return on investment was projected. Patients stated that automated monitoring helped them become more involved and motivated in their care. Clinicians indicated that using IVR freed up their time to concentrate on patients who were more at-risk for disease exacerbation and expanded their clinical capacity. In an era of clinical and financial accountability, being able to better identify patients who are at risk for hospital admission and who may benefit from more intensive management are key elements to help improve quality of care and the patient experience

    Effects of experimental warming and carbon addition on nitrate reduction and respiration in coastal sediments

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 125 (2015): 81-95, doi:10.1007/s10533-015-0113-4.Climate change may have differing effects on microbial processes that control coastal N availability. We conducted a microcosm experiment to explore effects of warming and carbon availability on nitrate reduction pathways in marine sediments. Sieved continental shelf sediments were incubated for 12 weeks under aerated seawater amended with nitrate (~50 μM), at winter (4°C) or summer (17°C) temperatures, with or without biweekly particulate organic C additions. Treatments increased diffusive oxygen consumption as expected, with somewhat higher effects of C addition compared to warming. Combined warming and C addition had the strongest effect on nitrate flux across the sediment water interface, with a complete switch early in the experiment from influx to sustained efflux. Supporting this result, vial incubations with added 15N-nitrate indicated that C addition stimulated potential rates of dissimilatory nitrate reduction to ammonium (DNRA), but not denitrification. Overall capacity for both denitrification and DNRA was reduced in warmed treatments, possibly reflecting C losses due to increased respiration with warming. Anammox potential rates were much lower than DNRA or denitrification, and were slightly negatively affected by warming or C addition. Overall, results indicate that warming and C addition increased ammonium production through remineralization and possibly DNRA. This stimulated nitrate production through nitrification, but without a comparable increase in nitrate consumption through denitrification. The response to C of potential DNRA rates over denitrification, along with a switch to nitrate efflux, raises the possibility that DNRA is an important and previously overlooked source of internal N cycling in shelf sediments.This material is based upon work supported by the National Science Foundation by OCE- 0852289 to JJR and OCE-0852263 and OCE-0927400 to AEG, and Rhode Island Sea Grant to JJR

    Similar temperature responses suggest future climate warming will not alter partitioning between denitrification and anammox in temperate marine sediments

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Global Change Biology 23 (2017): 331-340, doi:10.1111/gcb.13370.Removal of biologically available nitrogen (N) by the microbially mediated processes denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. Although few studies have examined temperature responses of denitrification and anammox, previous work suggests that denitrification could become more important than anammox in response to climate warming. To test this hypothesis, we determined whether temperature responses of denitrification and anammox differed in shelf and estuarine sediments from coastal Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was further assessed in a 12-week laboratory microcosm experiment. Temperature responses, as characterized by thermal optima (Topt) and apparent activation energy (Ea), were determined by measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging from 3 to 59°C. With a few exceptions, Topt and Ea of denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments, Ea was somewhat lower for anammox compared to denitrification across all treatments. However, Topt did not differ between processes, and neither Ea nor Topt changed with warming or carbon addition. Thus, the two processes behaved similarly in terms of temperature response, and this response was not influenced by warming. This led us to reject the hypothesis that anammox is more cold-adapted than denitrification in our study system. Overall, our study suggests that temperature responses of both processes can be accurately modeled for temperate regions in the future using a single set of parameters, which are likely not to change over the next century as a result of predicted climate warming. We further conclude that climate warming will not directly alter the partitioning of N flow through anammox and denitrification.This material is based upon work supported by the National Science Foundation under Grant No. OCE-0852289 to JJR and OCE-0852263, OCE-0927400 and OCE1238212 to AEG, and Rhode Island Sea Grant to JJR.2017-05-2

    Seasonal succession of free-living bacterial communities in coastal waters of the Western Antarctic Peninsula

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 1731, doi: 10.3389/fmicb.2016.01731.The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.CL was partially funded by the Graduate School and the Department of Ecology and Evolutionary Biology at Brown University and the Brown University-Marine Biological Laboratory Joint Graduate Program. This material is based upon work supported by the National Science Foundation under Grant Nos. ANT-1142114 to LA-Z, OPP-0823101 and PLR-1440435 to HD, and ANT-1141993 to JR
    corecore