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Abstract 18 

Removal of biologically available nitrogen (N) by the microbially mediated processes 19 

denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. 20 

Although few studies have examined temperature responses of denitrification and anammox, 21 

previous work suggests that denitrification could become more important than anammox in 22 

response to climate warming. To test this hypothesis, we determined whether temperature 23 

responses of denitrification and anammox differed in shelf and estuarine sediments from coastal 24 

Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was 25 

further assessed in a 12-week laboratory microcosm experiment. Temperature responses, as 26 

characterized by thermal optima (Topt) and apparent activation energy (Ea), were determined by 27 

measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging 28 

from 3 to 59°C. With a few exceptions, Topt and Ea of denitrification and anammox did not differ 29 

in Rhode Island sediments over the seasonal cycle. In microcosm sediments, Ea was 30 

somewhat lower for anammox compared to denitrification across all treatments. However, 31 

Topt did not differ between processes, and neither Ea nor Topt changed with warming or carbon 32 

addition. Thus, the two processes behaved similarly in terms of temperature response, and this 33 

response was not influenced by warming. This led us to reject the hypothesis that anammox is 34 

more cold-adapted than denitrification in our study system. Overall, our study suggests that 35 

temperature responses of both processes can be accurately modeled for temperate regions in the 36 

future using a single set of parameters, which are likely not to change over the next century as a 37 

result of predicted climate warming. We further conclude that climate warming will not directly 38 

alter the partitioning of N flow through anammox and denitrification.   39 

  40 
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Introduction 41 

Marine nitrogen (N) availability affects both regional and oceanic primary productivity as 42 

well as regional susceptibility to eutrophication (Ryther & Dunstan, 1971; Perry & Eppley, 1981; 43 

Diaz & Rosenberg, 2008). An important oceanic N sink is via microbially mediated N removal, 44 

particularly in coastal and continental shelf sediments, which receive and remove 50-80 Tg N y-1 45 

from terrestrial and marine sources (Howarth et al., 1996; Galloway et al., 2004; Gruber & 46 

Galloway, 2008). Benthic N removal occurs through denitrification and anaerobic ammonium 47 

oxidation (anammox), both of which are anaerobic processes that reduce NO3
- or NO2

- to N2. 48 

While denitrification is primarily a heterotrophic process that uses NO3
- to oxidize organic 49 

carbon, anammox uses NO2
- to oxidize NH4

+ and is primarily autotrophic. However, anammox 50 

depends on organic carbon mineralization indirectly as a source of NH4
+. Both denitrification 51 

and anammox are microbially mediated enzymatic processes that may respond differently to 52 

changes in temperature (Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004; Brin et al., 2014). 53 

As temperatures in coastal waters are predicted to continue to rise over the next century (Nixon 54 

et al., 2004; Christensen et al., 2007), differences in temperature responses between processes 55 

could alter the flux of N through denitrification versus anammox.  56 

The temperature response of an enzymatic process can be described by its activation 57 

energy (Ea), which reflects the increase in rate with increase in temperature (temperature 58 

dependence), as well as its thermal optimum (Topt), the temperature at which rates are maximal 59 

(Arrhenius, 1915). In nature, the temperature response of a biogeochemical processes is 60 

determined by the combined temperature response of the assemblage of organisms performing 61 

the reactions in any given environment (Allen et al., 2005; Hall et al., 2008, 2010; Yvon-62 

Durocher et al., 2014). Ecosystem level processes may display distinct temperature dependence, 63 
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as has been demonstrated for photosynthesis and respiration (Yvon-Durocher et al., 2010; 64 

Demars et al., 2011). For microbially mediated processes, changes in temperature responses 65 

could reflect: 1) changes at the cellular level, through physiological acclimation by individual 66 

microbial strains; or 2) changes at the microbial population level, through changes in abundance 67 

of strains adapted to different temperatures (Angilletta Jr., 2009; Hall et al., 2010; Crowther & 68 

Bradford, 2013). However, rates or temperature responses may be more strongly limited by other 69 

factors than temperature in the environment, such as substrate supply. Thus, in some cases there 70 

may not be a strong selective advantage to adapt to changes in temperature (Hartley et al., 2007, 71 

2008; Crowther & Bradford, 2013).  72 

The hypothesis that temperature may be a key driver of the relative importance of 73 

denitrification and anammox as N loss pathways was provided by studies in permanently cold 74 

sediments, which found that anammox was relatively more favored over denitrification at colder 75 

temperatures (Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004). More recent studies 76 

examining seasonal patterns or temperature responses of anammox and denitrification rates in 77 

marine sediments also support anammox being cold-adapted or hindered at higher temperatures 78 

(Teixeira et al., 2012; Brin et al., 2014; Canion et al., 2014a, 2014b). Besides temperature, 79 

availability of organic C likely exerts a strong influence on the relative importance of anammox 80 

and denitrification as N loss pathways, with organic C favoring denitrification over anammox 81 

(Thamdrup & Dalsgaard, 2002; Engström et al., 2005). As temperature also influences organic 82 

matter decomposition rates and therefore organic C availability, the effects of temperature could 83 

be mediated indirectly through changes in organic C availability rather than as a direct result of 84 

inherent differences in enzyme kinetics between the anammox or denitrification pathway 85 

(Isaksen & Jørgensen, 1996; Canion et al., 2014a; Brin et al., 2015).  86 
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Despite indications that anammox and denitrification rates may respond differently to 87 

temperature, this control has only been examined in a few studies (Dalsgaard & Thamdrup, 88 

2002; Rysgaard et al., 2004; Canion et al., 2014a, 2014b). Furthermore, it is unknown whether 89 

changes due to climate warming may alter not only rates but also the temperature dependence of 90 

each process (King & Nedwell, 1984; Acuña et al., 2008; Robador et al., 2009; Perkins et al., 91 

2012). Differences in temperature dependence of each process over the range of temperatures 92 

experienced in situ could alter the relative rates of each process, and thus its contribution to N2 93 

production (Holtan-Hartwig et al., 2002). Furthermore, climate warming could have indirect 94 

effects on temperature dependence by influencing organic C availability. This could occur if 95 

warming alters the deposition of organic C to benthic sediments, e.g. via changes in spring 96 

phytoplankton blooms in coastal ecosystems (Sommer & Lengfellner, 2008; Nixon et al., 2009; 97 

Lewandowska & Sommer, 2010), or the rate of consumption of sediment organic C (Alsterberg 98 

et al., 2012).  99 

We have examined controls on anammox and denitrification in temperate marine 100 

sediments previously by measuring potential rates in field collected samples over a seasonal 101 

cycle and in a separate microcosm experiment (Brin et al., 2014, 2015). In this paper, we report 102 

new measurements on the temperature responses of anammox and denitrification rates in the 103 

same sediments, to directly test the hypothesis that anammox and denitrification have different 104 

temperature responses. We asked whether Topt or Ea 1) vary between anammox and 105 

denitrification, 2) vary by sampling site or season within each process, and 3) can be altered by 106 

manipulations of temperature or organic C availability in a microcosm experiment.  107 
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Materials and Methods 108 

Seasonal study 109 

 To determine how temperature responses varied by site and season, two study sites were 110 

sampled in coastal Rhode Island, USA: an inner continental shelf site, Rhode Island Sound 111 

(RIS2) and an estuarine site, Providence River Estuary (PRE) (i.e., Heiss et al., 2012; Brin et al., 112 

2014). These sites will be referred to as shelf and estuarine sites, respectively. The shelf site had 113 

a water depth of 38 m, and bottom water temperatures were between 7 and 17ºC during sampling 114 

dates. The estuarine site had a water depth of 5 m and greater seasonal temperature variation, 115 

with measured bottom water temperatures between 3 and 22ºC across sampling dates. Sediments 116 

at both sites were fine-grained, with a higher organic carbon content at the estuarine site (2.6%) 117 

than the shelf site (0.8%) (NC2100 Elemental Analyzer). 118 

The shelf site was sampled in January, June, July, and September 2011 and March 2012, 119 

and the estuarine site was sampled in June and August 2011 and January 2012. At the shelf site, 120 

PVC tubes were fastened to the inside of a box core that was deployed from the research vessel 121 

to obtain intact sediment cores. At the estuarine site, intact cores were collected into PVC tubes 122 

(10 cm inner diameter) using a pull corer. After collection, the cores were immediately 123 

transported back to the laboratory at near-in situ temperature. Sediment cores were held in the 124 

dark at in situ temperature under air-bubbled site water in aquaria. This approach was taken 125 

because water columns at the sites were generally well mixed, indicating that bottom water was 126 

near air saturation. O2 microprofiles were measured in the cores 1-4 days after sample collection 127 

to determine the O2 penetration depth, as described previously (Brin et al., 2014). Cores were 128 

then removed from aquaria and a 1 cm depth layer of sediment just below the O2 penetration 129 

depth (<0.5 cm) was extruded from the core tube, sliced off, and collected for temperature 130 
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response measurements. This depth interval was the focus of this study as it contained the NO3
- 131 

reducing layer, based on O2 penetration depth and concentration of NO3
- in porewater profiles 132 

(Brin et al., 2014). Sediment from 4-5 cores corresponding to any given site and sampling date 133 

were pooled to obtain enough sediment to conduct temperature response measurements. 134 

 135 

Microcosm experiment 136 

A total of fifteen microcosms were set up and maintained as described previously, using 137 

sediment collected at the shelf site in March 2012 (Brin et al., 2015). Briefly, microcosms 138 

consisted of sieved (1 mm) surface sediment (0-4 cm depth interval) layered approximately 4 cm 139 

deep in glass pans, each placed in an aquarium containing 6 L of 0.2 µm-filtered Narragansett 140 

Bay seawater (salinity 32), which was kept air saturated with aquarium pumps. Half of the 141 

overlying water was replaced every two weeks to prevent buildup of nutrients or other 142 

compounds. All microcosms were initially held at 4°C for 16 days, after which three microcosms 143 

were destructively sampled, and potential rate experiments were conducted (t0 experiments). The 144 

microcosms were then exposed to temperature treatments by maintaining half of the microcosms 145 

at 4°C and shifting the other half to 17°C. This temperature manipulation represents seasonal 146 

minimum and maximum temperatures at the site (Emery & Uchupi, 1972; Brin et al., 2014). 147 

Carbon was added biweekly to half of the microcosms at either temperature in the form of 148 

Chlorella algae, in the form of a suspension that was gently mixed into the top 1 cm of sediment 149 

at a rate equivalent to 3.1 µmol C cm-2 d-1, which is expected to maintain sediment labile C 150 

availability (Brin et al., 2015). This resulted in four treatments in a full factorial design, referred 151 

to here as 4°C, 4°C+C, 17°C and 17°C+C, with three replicate aquaria in each treatment. O2 152 

consumption was increased by both carbon addition and temperature. O2 penetration into the 153 
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sediment was at most 0.5 cm, with shallower penetration in sediments with greater O2 154 

consumption, indicating that added organic C reached anoxic layers in all the microcosms. 155 

Treatments were maintained for 12 weeks, after which point the overlying water was aspirated 156 

off and the contents of each pan were collected into a beaker for temperature response 157 

measurements.  158 

 159 

Temperature responses of denitrification and anammox potential rates  160 

 Sediment from a given site or microcosm replicate was homogenized in a beaker, and 1.5 161 

mL of this sediment was transferred into replicate vials (5.9 mL, 93 replicate vials per site or 31 162 

replicate vials per microcosm replicate) to conduct parallel incubations at different temperatures. 163 

The headspace of the vials was made anoxic by purging the headspace with helium, and vials 164 

were pre-incubated overnight at the associated in situ or experimental microcosm temperature to 165 

remove ambient porewater NOx
-. For the microcosm experiment, replicates were maintained 166 

within the thermoblock, yielding 3 measurements of Ea for each treatment. 167 

Temperature responses were measured using a thermal gradient incubator (thermoblock) 168 

similar to Rysgaard et al. (2004). The thermoblock consisted of a 1.8 m long piece of aluminum 169 

with a silicone rubber heater on one side, a Peltier cooler at the other, and 31 parallel rows of 3 170 

holes (vial wells) along its length to fit the vials. This created a stable linear temperature gradient 171 

with endpoints at 2.8 ± 0.7°C and 58.9 ± 0.8°C (mean ± s.d.), as determined by measurement of 172 

temperatures in vial wells before and after experiments, as well as with temperature probes 173 

embedded in the thermoblock during all incubations. The vials were transferred from their pre-174 

incubation temperature into the thermoblock for approximately 90 minutes to allow for complete 175 

temperature equilibration of sediments. Potential rate measurements were commenced after the 176 
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90 min equilibration period by adding 50 µL of 15NO3
-+14NH4

+ (100 nmol N mL-1 sediment) to 177 

the vials. After 5-50 min incubations in the presence of added 15NO3
-+14NH4

+, all reactions were 178 

completely stopped by adding 100 µL 7M ZnCl2. The amount of 15N-N2 that accumulated in 179 

vials during the incubation was used to determine rates of denitrification and anammox. Shorter 180 

incubations were conducted for sediments with higher inherent rates, such as estuarine 181 

sediments. Rates were plotted as a function of temperature in the thermoblock, which by 182 

definition is referred to as a thermal profile in this study. 183 

15N-N2 production in the vials was measured with an isotope ratio mass 184 

spectrophotometer (Isoprime CF-IRMS interfaced with Multiflow-Bio Unit) and rates were 185 

calculated as described in Thamdrup and Dalsgaard (2002). By convention, the percent of N2 186 

production accounted for by anammox is abbreviated as ra (relative anammox), and calculated as 187 

100 X (anammox) / (anammox + denitrification). 188 

In addition to thermoblock experiments, parallel sets of potential rate measurements in 189 

triplicate vials were run to serve as different controls, as follows. One set of vials received 190 

unlabeled NO3
- and NH4

+ and was incubated at in situ temperature in the seasonal study, or 17°C 191 

for the microcosm experiment, in order to assess NO3
- concentrations remaining in the vials after 192 

time intervals that were used in thermoblock incubation. This confirmed that NO3
- was not 193 

depleted during incubations. Three additional 15N isotope additions were run for samples 194 

collected on the different sampling dates at the estuarine and shelf sites. These incubations were 195 

done at in situ temperature, in parallel to thermoblock incubations. One incubation received the 196 

same 15NO3
-+ 14NH4

+ addition as in the thermoblock incubation, with four equally spaced 197 

measurement time points starting immediately after N addition, confirming linear production of 198 

29N2 and 30N2 during the incubation. An additional incubation received 15NH4
+ + 14NO3

-, and 199 
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another received 15NH4
+ alone, confirming the presence or absence of anammox and that N2 was 200 

not produced by some other process independent of NO3
- reduction (Yang et al., 2012). The rates 201 

from incubations with added 15NH4
++14NO3

- or 15NH4
+ alone were reported previously (Brin et 202 

al., 2014), and those results are consistent with the relative rates of anammox reported in this 203 

study. Vials with no added N were also included at the beginning of the experiment to correct for 204 

any residual 14NO3
- that might have remained after the pre-incubation. The fraction of 15N-205 

labelled NO3
- in the incubations, accounting for the fraction of 15N in added 15NO3

- (i.e., 0.99), 206 

was >0.96 across all incubations.  207 

 208 

Statistical analysis 209 

Statistical analyses were conducted using R version 2.15.0 (R Development Core Team). 210 

For all analyses, statistical tests were considered significant at the p<0.05 level. 211 

To statistically define Topt, a general additive model was fit to each profile using the R 212 

package mgcv (Wood, 2006, 2011; Zuur et al., 2009), using cubic regression splines and cross-213 

validation. Temperatures with modeled rates that fell within the 95% confidence interval of the 214 

maximum rate were all considered to be Topt. Therefore, the Topt values reported below reflect 215 

this statistically defined range. One exception was made for denitrification in PRE sediments in 216 

January 2012, for which there was a double peak; both peaks were subject to this analysis and 217 

considered to be part of Topt. If the range in Topt overlapped between any given comparison of 218 

samples, we considered Topt to be not significantly different. Whether relationships between Topt 219 

and temperature in the seasonal study or microcosm experiment were significant were 220 

determined with linear regression (p <0.05). 221 
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Temperature-rate relationships were examined with the linearized form of the Arrhenius 222 

equation with a standardized temperature (Rysgaard et al., 2004; Yvon-durocher et al., 2010): 223 

(1)   ln[Rate(T)] = -Ea*(1/kT – 1/kTc) + ln[Rate(Tc)] 224 

where Tc is the standardized temperature of 15°C (Perkins et al., 2012); ln[Rate(Tc)] is the 225 

Arrhenius constant in the traditional derivation; Ea is the apparent activation energy for the 226 

measured process; k is the Boltzmann constant (8.62 * 10-5 eV K-1); and T is the measurement 227 

temperature in Kelvin. Ea is calculated as the negative slope of the linear regression through the 228 

linear range of the thermal profile below Topt. Ea values in eV and kJ mol-1 are presented here to 229 

compare directly with previous work on both nitrogen cycling (kJ mol-1) and ecosystem 230 

respiration (eV). In the seasonal study, the standard error in Ea was estimated from regression 231 

lines in Arrenhius plots, whereas in the microcosm experiment, standard error was determined 232 

across microcosm replicates. Relationships between the linear intercept (rate at 15ºC) and in situ 233 

temperature were assessed with linear regression. 234 

 We used similar linear mixed effects models using the function lme within the R package 235 

nlme (Pinheiro et al., 2016) to test for differences in Ea between processes, sampling sites, or 236 

microcosm treatments (Zuur et al., 2009). Three datasets were analyzed corresponding to the 237 

seasonal study, microcosm experiment, or the combined data.  For each analysis, models 238 

included the following main effects: measurement temperature, site or treatment, process, and 239 

interactions between temperature and both site/treatment and process. For each analysis, we used 240 

Akaike information criterion (AIC) scores to compare three models with all main effects to 241 

determine the random effects structure of the data: with no random effects; with random 242 

intercepts; and with random slopes and intercepts. Random effects assessed variation at the level 243 

of individual and distinct thermal profiles. As such, sampling date (for the seasonal study) and 244 
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treatment replicate (for the microcosm study) were treated as random effects on the slope and 245 

intercept. Comparisons between these three models indicated whether the random effects term 246 

varied in slope (Ea) as well as intercept (magnitude of rates). We continued with the model with 247 

the lowest AIC score to test for significance of main effects. For all microcosm analyses, models 248 

with random slopes and intercepts had lowest AIC scores and were selected further analysis. Ea 249 

was considered to vary significantly for main effects if their interaction with temperature was 250 

significant. For example, to assess differences in Ea across sites, we assessed whether there was a 251 

significant interaction between site and temperature, which would indicate that the relationship 252 

of rate with temperature varied by site. 253 

In the seasonal study, within each site and process, we further explored which sampling 254 

dates contributed to differences in apparent activation energies (i.e., denitrification or anammox) 255 

using a similar linear mixed modelling approach in which temperature was the sole main effect. 256 

Select dates were removed to determine their effect on random effects structures.  257 
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Results 258 

Temperature responses by site and season 259 

Rates of denitrification and anammox increased with temperature up to 20-35°C, with 260 

declining rates thereafter (Fig. 1a-d). There were strong seasonal differences in absolute rates 261 

within a site (sampling date p<0.001), particularly for denitrification in shelf sediments, with the 262 

lowest rates in January 2011 and highest rates in March 2012 (Fig. 1a). Potential denitrification 263 

reached a higher maximum rate in estuarine (PRE) compared to shelf (RIS2) sediments, but the 264 

range in maximum rates between the two sites overlapped, indicating strong potential for 265 

denitrification at both sites during the sampling period (Fig. 1a vs. b). In shelf sediments, 266 

potential anammox rates were 2-6 times lower than denitrification rates (Fig 1a vs. c). Rates 267 

were not related to in situ temperatures for either site or process. In estuarine sediments, 268 

anammox rates were undetectable or close to the detection limit (<1 nmol N h-1 mL-1 sediment) 269 

(Fig. 1d).  We therefore did not calculate Topt and Ea values for anammox at the estuarine site. 270 

The range in Topt was 18-35ºC for denitrification and 22-33ºC for anammox (Table S1, 271 

Fig. 2). Topt overlapped for anammox and denitrification on each sampling date. There was no 272 

relationship between Topt and in situ temperature, nor was there a consistent pattern in Topt across 273 

sites or seasons. Within each site and process, Topt overlapped for all sampling dates, with the 274 

exception of denitrification in January 2011 in shelf sediments, which had a narrower profile and 275 

higher Topt than September and March (Fig. 2). The thermal profile for denitrification in 276 

estuarine sediments in January 2012 had a double peak that bracketed those for other seasonal 277 

measurements.  278 

Apparent Ea values were between 0.40 and 0.63 eV (38.5 and 60.4 kJ mol-1) for 279 

denitrification in shelf sediments, 0.36 and 0.69 eV (34.3 and 66.9 kJ mol-1) for anammox in 280 
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shelf sediments, and 0.37 and 0.55 eV (35.8 and 53.0 kJ mol-1) for denitrification in estuarine 281 

sediments (Table S1, Fig. 1e-g). Apparent Ea did not differ significantly between sites for 282 

denitrification nor between denitrification and anammox (linear mixed effects model, p>0.05). 283 

The mixed model with the lowest AIC score included both random slope and intercept, 284 

indicating that Ea differed across sampling dates. Differences in denitrification Ea by sampling 285 

date were driven by high Ea at the shelf site in January 2011 and low Ea at the estuarine site in 286 

June 2011, as models without random slopes became optimal when these dates were omitted. 287 

Anammox Ea also differed by date in shelf sediments, driven by higher Ea values in July and 288 

September 2011. However, in the full model, the variance was much greater for the intercept 289 

(capacity; d2=0.40) than for the slope (Ea; d
2=0.0085), indicating that differences among dates 290 

were more dependent on overall capacity than temperature dependence. 291 

Across all thermoblock measurements in shelf sediments, ra ranged from negligible to 292 

62%. In 3 out of 5 sampling dates, there was no change in ra as a function of thermoblock 293 

temperature across a range of 3-35°C (Fig. 3). However, in January 2011, ra was negatively 294 

correlated with temperature (p<0.001, R=-0.89), decreasing from 62% at 3°C to 28% at 35°C. 295 

This switch to a negative correlation was driven not by a change in anammox temperature 296 

dependence or capacity across sampling dates, but by a change in the shape of the denitrification 297 

thermal profile on this particular date (Fig. 1a, c). In contrast, in September 2011, ra was 298 

positively correlated with temperature (p=0.001, R=0.70) (Fig. 3).  299 

 300 

Microcosm experiment 301 

Incubating microcosm sediments at 4°C without C addition for 12 weeks did not change 302 

denitrification rates compared to t0 measurements, while anammox rates decreased slightly, 303 
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relative to the t0 control (Fig. 4a, b). Contrary to expectations, denitrification rates decreased 304 

significantly in 17°C treatments, with or without C, relative to t0, as well as in the 4°C treatment 305 

with C (Fig. 4a; linear mixed effects model with random slope and intercept, p<0.001). 306 

Anammox rates showed a similar decrease with treatments as denitrification (Fig. 4b; linear 307 

mixed effects model, p<0.001). Topt overlapped for anammox and denitrification, as well as 308 

across treatments for each process (Fig. 2, Table S1). Similarly, Topt in the microcosm 309 

experiment did not differ from the seasonal study, although ranges were more consistent in the 310 

microcosm experiment (Fig. 2). 311 

The sediment that was used in the microcosm experiment was from March 2012, when Ea 312 

of anammox was the lowest across sampling dates (Table S1). This lower Ea was reflected in the 313 

microcosm experiment, as Ea was significantly lower for anammox than denitrification (linear 314 

mixed effects model, process x temperature interaction p<0.001). Apparent Ea values were 315 

between 0.38 and 0.48 eV (36.5 and 46.4 kJ mol-1) for denitrification and 0.20 and 0.32 eV (19.3 316 

and 30.8 kJ mol-1) for anammox. However, Ea was not significantly different between treatments 317 

for either process (Table S1, Fig. 4c, d), and as with the seasonal study, variance was much 318 

greater for the intercept (capacity; d2=0.026) than for the slope (Ea; d
2=0.0014). Furthermore, 319 

neither denitrification nor anammox Ea differed significantly between the microcosm experiment 320 

and the seasonal study.   321 
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Discussion 322 

The denitrification Topt values measured in this study (21 to 35°C) indicate a mesophilic 323 

community of denitrifiers in temperate Rhode Island sediments. Given overlapping Topt and 324 

mostly similar apparent Ea values, there was no indication of a specifically cold- or warm-325 

adapted population of denitrifiers that developed seasonally, between sites, or in response to 326 

experimentally manipulated temperatures. This indicates functionally equivalent denitrifier 327 

populations in terms of temperature response, despite variation in rates (Fig. 1e-g, 4 c-d). 328 

Furthermore, warmest in situ temperatures were within the range of Topt, suggesting that 329 

denitrifiers were reasonably well adapted to the annual temperature regime at the sites. Our 330 

results agree with the general finding that denitrification rates display a mesophilic Topt and 331 

comparable Ea values in a broad range of sediments from temperate to Arctic systems (Dalsgaard 332 

& Thamdrup, 2002; Rysgaard et al., 2004; Canion et al., 2014a, 2014b). This implies that 333 

relatively large temperature changes from the Arctic to temperate regions do not cause 334 

significantly different temperature responses for denitrification. In contrast, denitrification in 335 

subtropical sediments has been shown to have distinctly higher Topt and Ea values compared to 336 

colder sediments (Canion et al., 2014b). Thus, warmer climates may cause a change in the 337 

temperature response of denitrification. However, the degree of warming needed to cause such a 338 

change is probably greater than the 2-2.5ºC warming that is predicted to occur in our study 339 

region over the next century (Meehl et al., 2007; Taboada & Anadón, 2012; Mills et al., 2013).   340 

Previous studies have suggested that anammox bacteria are more cold-adapted than 341 

denitrifiers, due to lower Topt (9-18°C) or Ea in anammox bacteria, and measurements of higher 342 

ra values at lower temperatures (Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004; Canion et 343 

al., 2014a, 2014b). However, most of these studies have been conducted in permanently cold 344 
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marine sediments. The present study is one of the few that has been conducted in temperate 345 

sediments (Canion et al., 2014b). We found that the range in Topt values of denitrification and 346 

anammox were not significantly different in the seasonal study or microcosm experiment (Fig. 2, 347 

Table S1). Ea of anammox was significantly lower than Ea of denitrification in the microcosm 348 

experiment, which appeared to be driven by initial values of Ea in the sediments used to set up 349 

the microcosm experiment rather than any significant influence of experimental treatments. Ea 350 

values of anammox and denitrification were not significantly different across the seasonal study, 351 

indicating that there was not an overall consistent difference in Ea between the two processes. 352 

Cumulatively, we conclude that overall populations of active anammox bacteria are not more 353 

cold-adapted than denitrifiers in our study system. Similar to denitrification, the results do not 354 

indicate consistent seasonal shifts in temperature responses of anammox. On the one sampling 355 

date when ra did decrease with increasing temperature (January 2011), this was driven by a shift 356 

in the temperature response of denitrification rather than anammox. The correlation between 357 

ra and temperature across seasons that was previously noted (Brin et al., 2014) may therefore 358 

have been due to other factors besides temperature that vary seasonally, rather than relatively 359 

faster rates of denitrification compared to anammox at warmer temperatures. As anammox may 360 

depend on denitrification for a source of NO2
- (Trimmer et al., 2003; Risgaard-Petersen et al., 361 

2004; Meyer et al., 2005; Brin et al., 2014), similar temperature responses overall might reflect 362 

the relationship between the two processes.  363 

The capacity for denitrification, as reflected in thermal profiles and in the linear intercept 364 

of Arrhenius plots (Fig. 1, 3), changed across sampling dates in the seasonal study as well as 365 

with treatment in the microcosm study. These changes in magnitude could be associated with 366 

changes in the abundance of denitrifier populations, the amount of enzyme being produced by 367 
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the denitrifiers present, substrate availability, or a combination of factors. The lack of a 368 

correlation between linear intercept and in situ temperature in the seasonal study suggests that 369 

temperature effects may be indirect, and that potential rates are controlled by other factors in 370 

addition to temperature. One potential control of denitrification rates in coastal and marine 371 

sediments is organic C availability, with higher rates reflecting greater C availability (Dalsgaard 372 

et al., 2005; Brin et al., 2014). Experiments with Arctic sediments demonstrated that addition of 373 

organic acids (i.e., acetate, lactate) significantly increased sulfate reduction or denitrification 374 

rates in thermoblock experiments (Isaksen & Jørgensen, 1996; Canion et al., 2014a). Similarly, 375 

we expected that organic C addition in our microcosm experiment would increase denitrification 376 

rates relative to microcosms without C addition. Surprisingly, organic C addition did not yield 377 

this result. The lack of response of denitrification rates in our microcosm experiment may have 378 

been due to competition for NO3
- with other processes, as potential dissimilatory nitrate 379 

reduction to ammonium (DNRA) rates were stimulated by the organic C addition, while potential 380 

denitrification rates were not (Brin et al., 2015). The form of organic C added may also have had 381 

an influence on this result, with regular additions of freeze-dried phytoplankton favoring DNRA 382 

bacteria over denitrifiers. 383 

The aim of this study was to determine how shifts in temperature and C availability 384 

through seasonal changes or experimental manipulations influence the temperature responses of 385 

anammox or denitrification. We found that temperature responses of anammox and 386 

denitrification were more similar to each other than previously reported (Dalsgaard & Thamdrup, 387 

2002; Rysgaard et al., 2004; Canion et al., 2014b), and both processes were characterized as 388 

mesophilic instead of anammox being more cold-adapted than denitrification. Overall, our 389 

results suggest that predicted warming in our study region over the next century will not act 390 
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through direct temperature effects to decrease the contribution of anammox to N2 production 391 

relative to denitrification. In contrast, strong differences in absolute rates with season suggest 392 

that factors other than temperature dependence are important regulators of relative rates of 393 

anammox and denitrification.   394 

Page 19 of 32 Global Change Biology



Nitrate reduction temperature responses 

20

Acknowledgments 395 

Thank you to Caroline Scanlan, Phil Arevalo, Michaeline Nelson, Amber Hardison and 396 

Heather Leslie for help in the lab and the field. Thanks also to Elise Heiss, Lindsey Fields, 397 

Shelley Brown, Wally Fulweiler, Scott Nixon, Bethany Jenkins, Jane Tucker, Steve Granger, 398 

Rodman Sykes, Rebecca Robinson, Stephen Porder and Aaron McFarlane for help in the project, 399 

and to Charlie Vickers, Mike Packer and Brian Corkum for help with thermoblock construction. 400 

We are grateful to Capt. Rodman Sykes of the F/V Virginia Marise and his crew for assisting 401 

with sampling. We thank two anonymous reviewers whose comments have helped to improve 402 

this manuscript. This material is based upon work supported by the National Science Foundation 403 

under Grant No. OCE-0852289 to JJR and OCE-0852263, OCE-0927400 and OCE1238212 to 404 

AEG, and Rhode Island Sea Grant to JJR.   405 

Page 20 of 32Global Change Biology



Nitrate reduction temperature responses 

21

References 406 

Acuña V, Wolf A, Uehlinger U, Tockner K (2008) Temperature dependence of stream benthic 407 
respiration in an Alpine river network under global warming. Freshwater Biology, 53, 408 
2076–2088. 409 

Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual 410 
metabolism. Functional Ecology, 19, 202–213. 411 

Alsterberg C, Sundbäck K, Hulth S (2012) Functioning of a shallow-water sediment system 412 
during experimental warming and nutrient enrichment. PloS one, 7, e51503. 413 

Angilletta Jr. MJ (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford 414 
University Press, 320 pp. 415 

Arrhenius S (1915) Quantitative Laws in Biological Chemistry (ed G. Bell and Sons L). London, 416 
1-164 pp. 417 

Brin LD, Giblin AE, Rich JJ (2014) Environmental controls of anammox and denitrification in 418 
southern New England estuarine and shelf sediments. Limnology and Oceanography, 59, 419 
851–860. 420 

Brin LD, Giblin AE, Rich JJ (2015) Effects of experimental warming and carbon addition on 421 
nitrate reduction and respiration in coastal sediments. Biogeochemistry, 125, 81–95. 422 

Canion A, Overholt WA, Kostka JE, Huettel M, Lavik G, Kuypers MMM (2014a) Temperature 423 
response of denitrification and anammox rates and microbial community structure in Arctic 424 
fjord sediments. Environmental Microbiology, 16, 3331–3344. 425 

Canion A, Kostka JE, Gihring TM et al. (2014b) Temperature response of denitrification and 426 
anammox reveals the adaptation of microbial communities to in situ temperatures in 427 
permeable marine sediments that span 50o in latitude. Biogeosciences, 11, 309–320. 428 

Christensen JH, Hweitson B, Busuioc A et al. (2007) Regional Climate Projections. In: Climate 429 
Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 430 
Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin 431 
D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge 432 
University Press, Cambridge, United Kingdom and New York, NY, USA. 433 

Crowther TW, Bradford MA (2013) Thermal acclimation in widespread heterotrophic soil 434 
microbes (ed Johnson N). Ecology Letters. 435 

Dalsgaard T, Thamdrup B (2002) Factors controlling anaerobic ammonium oxidation with nitrite 436 
in marine sediments. Applied and Environmental Microbiology, 68, 3802–3808. 437 

Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in 438 
the marine environment. Research in Microbiology, 156, 457–464. 439 

Demars BOL, Russell Manson J, Ólafsson JS et al. (2011) Temperature and the metabolic 440 
balance of streams. Freshwater Biology, 56, 1106–1121. 441 

Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. 442 
Science, 321, 926–929. 443 

Page 21 of 32 Global Change Biology



Nitrate reduction temperature responses 

22

Emery KO, Uchupi E (1972) Western North Atlantic Ocean: Topography, Rocks, Structure, 444 
Water, Life, and Sediments. American Association of Petroleum Geologists, Tulsa, 445 
Oklahoma, 532 pp. 446 

Engström P, Dalsgaard T, Hulth S, Aller RC (2005) Anaerobic ammonium oxidation by nitrite 447 
(anammox): Implications for N production in coastal marine sediments. Geochimica et 448 
Cosmochimica Acta, 69, 2057–2065. 449 

Galloway JN, Dentener FJ, Capone DG et al. (2004) Nitrogen cycles: Past, present, and future. 450 
Biogeochemistry, 70, 153–226. 451 

Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. 452 
Nature, 451, 293–296. 453 

Hall EK, Neuhauser C, Cotner JB (2008) Toward a mechanistic understanding of how natural 454 
bacterial communities respond to changes in temperature in aquatic ecosystems. The ISME 455 
Journal, 2, 471–81. 456 

Hall EK, Singer GA, Kainz MJ, Lennon JT (2010) Evidence for a temperature acclimation 457 
mechanism in bacteria: An empirical test of a membrane-mediated trade-off. Functional 458 
Ecology, 24, 898–908. 459 

Hartley IP, Heinemeyer A, Ineson P (2007) Effects of three years of soil warming and shading 460 
on the rate of soil respiration: Substrate availability and not thermal acclimation mediates 461 
observed response. Global Change Biology, 13, 1761–1770. 462 

Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial 463 
respiration in arctic soil does not acclimate to temperature. Ecology Letters, 11, 1092–100. 464 

Heiss EM, Fields L, Fulweiler RW (2012) Directly measured net denitrification rates in offshore 465 
New England sediments. Continental Shelf Research, 45, 78–86. 466 

Holtan-Hartwig L, Dörsch P, Bakken LR (2002) Low temperature control of soil denitrifying 467 
communities: kinetics of N2O production and reduction. Soil Biology and Biochemistry, 34, 468 
1797–1806. 469 

Howarth RW, Billen G, Swaney D et al. (1996) Regional nitrogen budgets and riverine N & P 470 
fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. 471 
Biogeochemistry, 35, 75–139. 472 

Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate-473 
reducing bacteria to permanently cold marine environments. Applied and Environmental 474 
Microbiology, 62, 408–414. 475 

King D, Nedwell DB (1984) Changes in the nitrate-reducing community of an anaerobic 476 
saltmarsh sediment in response to seasonal selection by temperature. Journal of General 477 
Microbiology, 130, 2935–2941. 478 

Lewandowska A, Sommer U (2010) Climate change and the spring bloom: A mesocosm study 479 
on the influence of light and temperature on phytoplankton and mesozooplankton. Marine 480 
Ecology Progress Series, 12, 101–111. 481 

Meehl GA, Stocker TF, Collins WD et al. (2007) Global Climate Projections. In: Climate 482 

Page 22 of 32Global Change Biology



Nitrate reduction temperature responses 

23

Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 483 
Assessment Report of the Intergoernmental Panel on Climate Change (eds Solomon S, Qin 484 
D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), pp. 747–845. 485 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 486 

Meyer RL, Risgaard-Petersen N, Allen DE (2005) Correlation between anammox activity and 487 
microscale distribution of nitrite in a subtropical mangrove sediment. Applied and 488 
Environmental Microbiology, 71, 6142–6149. 489 

Mills KE, Pershing A, Brown C (2013) Fisheries management in a changing climate: Lessons 490 
from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography, 26, 191–195. 491 

Nixon SW, Granger S, Buckley BA, Lamont M, Rowell B (2004) A one hundred and seventeen 492 
year coastal water temperature record from Woods Hole, Massachusetts. Estuaries, 27, 493 
397–404. 494 

Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM (2009) The 495 
impact of changing climate on phenology, productivity, and benthic-pelagic coupling in 496 
Narragansett Bay. Estuarine, Coastal and Shelf Science, 82, 1–18. 497 

Perkins DM, Yvon-Durocher G, Demars BOL et al. (2012) Consistent temperature dependence 498 
of respiration across ecosystems contrasting in thermal history. Global Change Biology, 1–499 
12. 500 

Perry MJ, Eppley RW (1981) Phosphate uptake by phytoplankton in the central North Pacific 501 
Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 28, 39–49. 502 

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: Linear and nonlinear 503 
mixed effects models. 504 

R Development Core Team R: A language and environment for statistical computing. 505 
http://www.r-project.org. 506 

Risgaard-Petersen N, Meyer R, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech 507 
NP (2004) Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial 508 
Ecology, 36, 293–304. 509 

Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity 510 
and community composition of sulfate-reducing bacteria in arctic versus temperate marine 511 
sediments. Environmental Microbiology, 11, 1692–703. 512 

Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox 513 
activity in Arctic marine sediments. Limnology and Oceanography, 49, 1493–1502. 514 

Ryther JH, Dunstan WM (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine 515 
environment. Science, 171, 1008–1013. 516 

Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of 517 
the phytoplankton spring bloom. Global Change Biology, 14, 1199–1208. 518 

Taboada FG, Anadón R (2012) Patterns of change in sea surface temperature in the North 519 
Atlantic during the last three decades: Beyond mean trends. Climatic Change, 115, 419–520 
431. 521 

Page 23 of 32 Global Change Biology



Nitrate reduction temperature responses 

24

Teixeira C, Magalhães C, Joye SB, Bordalo A (2012) Potential rates and environmental controls 522 
of anaerobic ammonium oxidation in estuarine sediments. Aquatic Microbial Ecology, 66, 523 
23–32. 524 

Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation 525 
coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 526 
68, 1312–1318. 527 

Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in 528 
sediments along the Thames Estuary, United Kingdom. Applied and Environmental 529 
Microbiology, 69, 6447–6454. 530 

Wood SN (2006) Generalized additive models: An introduction with R. Chapman and Hall/CRC. 531 

Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation 532 
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 533 
73, 3–36. 534 

Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium 535 
oxidation coupled to iron reduction. Nature Geoscience, 5, 538–541. 536 

Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the 537 
metabolic balance of ecosystems. Philosophical transactions of the Royal Society of 538 
London. Series B, Biological sciences, 365, 2117–26. 539 

Yvon-durocher G, Allen AP, Montoya JM, Trimmer M, Woodward G (2010) The temperature 540 
dependence of the carbon cycle in aquatic ecosystems. Advances in Ecological Research, 541 
43, 267–313. 542 

Yvon-Durocher G, Allen AP, Bastviken D et al. (2014) Methane fluxes show consistent 543 
temperature dependence across microbial to ecosystem scales. Nature, 507, 488–91. 544 

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effects Models and 545 
Extensions in Ecology with R. Springer, New York, NY, 574 pp. 546 

 547 

  548 

Page 24 of 32Global Change Biology



Nitrate reduction temperature responses 

25

Supporting information captions 549 

Table S1 – Apparent activation energies (Ea) and thermal optima (Topt) of denitrification and 550 

anammox in shelf and estuarine sediments and the microcosm experiment. Asterisks denote 551 

Ea values that differ significantly from others within the same site and process.  552 
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Figure captions 553 

Figure 1. Thermal profiles (a-d) and Arrhenius plots (e-h) of denitrification and anammox in 554 

shelf and estuarine sediments. Panels are as follows: Denitrification in shelf (a, e) and estuarine 555 

(b, f) sediments; anammox in the shelf (c, g) and estuarine (d, h) sediments. Curves in (a) 556 

through (d) are general additive models fit to the data, and asterisks on the x-axis denote in situ 557 

bottom water temperatures at the time of sampling. Lines in (e) through (h) are significant linear 558 

regressions, the negative slopes of which are the activation energy (Ea). 559 

Figure 2. Denitrification and anammox Topt for all seasonal sampling dates and microcosm 560 

treatments, and bottom water in situ or microcosm incubation temperature. Error bars denote Topt 561 

ranges.   562 

Figure 3. Relative contribution of anammox to N2 production (ra) in shelf sediments as a 563 

function of incubation temperature.  564 

Figure 4. Thermal profiles (a, b) and Arrenhius plots (c, d) of denitrification (a, c) and anammox 565 

(b, d) in the microcosm experiment. Curves in (a) and (b) are general additive models fit to the 566 

data. Lines in (c) and (d) are significant linear regressions, the negative slopes of which are the 567 

activation energy (Ea).  568 
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Supporting information 569 

Table S1 – Apparent activation energies (Ea) and thermal optima (Topt) of denitrification and 570 

anammox in shelf and estuarine sediments and the microcosm experiment. Asterisks denote 571 

Ea values that differ significantly from others within the same site and process. 572 

Site and 
process 

Treatment or 
sampling date 

Seasonal or 
microcosm 
temperature 
(ºC) 

Activation 
energy#  
(kJ mol-1) 

Activation 
energy#  
(eV) Topt (°C) Topt range (°C) 

Shelf  January 2011 6 60.4 ± 2.8* 0.63 ± 0.03* 35.0 33.1 – 35.0 

denitrification June 2011 11 43.7 ± 5.6 0.45 ± 0.06 27.3 19.8 – 33.0 

 July 2011 16 50.5 ± 6.6 0.52 ± 0.07 27.5 23.8 – 31.3 

 September 2011 17 38.5 ± 6.8 0.40 ± 0.07 23.7 18.2 – 27.4 

 March 2012 7 43.7 ± 2.9 0.45 ± 0.03 25.4 21.8 – 27.2 

Shelf  January 2011 6 38.2 ± 4.1 0.40 ± 0.04 31.1 29.2 – 33.1 

anammox June 2011 11 38.0 ± 3.0 0.39 ± 0.03 23.6 21.7 – 29.2 

 July 2011 16 49.4 ± 3.6* 0.51 ± 0.04* 27.5 25.7 – 29.4 

 September 2011 17 66.9 ± 12.3* 0.69 ± 0.13* 29.2 27.4 – 31.0 

 March 2012 7 34.3 ± 2.6 0.36 ± 0.03 29.0 25.4 – 30.8 

Estuary  June 2011 16 35.8 ± 2.1* 0.37 ± 0.02* 31.1 29.2 – 34.9 

denitrification August 2011 22 46.2 ± 4.1 0.48 ± 0.04 26.6 22.7 – 30.4 

 January 2012 6 53.0 ± 5.3 0.55 ± 0.05 21.3 19.5 – 23.1 

     33.9 23.1 – 37.5 

Microcosm t0 4 41.2 ± 2.6 0.43 ± 0.03 24.5 22.7 – 26.3 

denitrification 4°C 4 40.2 ± 4.1 0.42 ± 0.04 24.7 22.8 – 26.5 

 4°C+C 4 36.5 ± 1.7 0.38 ± 0.02 22.8 21.0 – 26.5 

 17°C 17 44.4 ± 0.4 0.46 ± 0.005 23.1 21.3 – 26.8 

 17°C+C 17 46.4 ± 1.9 0.48 ± 0.02 23.1 21.3 – 26.8 

Microcosm t0 4 30.5 ± 12.1 0.32 ± 0.13 28.1 22.7 – 29.9 

anammox 4°C 4 30.8 ± 6.4 0.32 ± 0.07 28.4 24.7 – 32.0 

 4°C+C 4 26.3 ± 4.2 0.27 ± 0.04 26.5 24.7 – 28.4 

 17°C 17 19.3 ± 9.9 0.20 ± 0.10 26.8 NA§ – 32.3 

 17°C+C 17 21.5 ± 8.4 0.22 ± 0.09 26.8 21.3 – 30.4 
 573 

#Ea is the negative of the mean slope ± s.e. of the regression line in Arrenhius plots 574 

corresponding to shelf and estuarine sediments, while in the microcosm experiment, it 575 

corresponds to the negative mean ± s.e. of Ea for three replicate aquaria. 576 

§Not able to calculate lower limit as all rates below the maximum rate were within 95% 577 
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confidence interval of maximum rate. 578 
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