brought to you by CORE

Nitrate reduction temperature responses

1	Similar temperature responses suggest future climate warming will not alter partitioning between				
2	denitrification and anammox in temperate marine sediments				
3					
4	Lindsay D. Brin ^{1*} , Anne E. Giblin ² , and Jeremy J. Rich ³				
5					
6	¹ Canadian Rivers Institute, University of New Brunswick, 100 Tucker Park Road, Saint John,				
7	New Brunswick E2L 4L5, Canada				
8	² Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts				
9	02543, USA				
10	³ School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, Maine 04573				
11	*Corresponding author, email: lindsay.brin@gmail.com, phone: (506) 654-6872				
12					
13					
14	Key words: denitrification, anammox, marine sediment, climate change, temperature				
15	dependence, activation energy				
16					
17	Paper type: Primary research				

18 Abstract

19 Removal of biologically available nitrogen (N) by the microbially mediated processes 20 denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. 21 Although few studies have examined temperature responses of denitrification and anammox, 22 previous work suggests that denitrification could become more important than anammox in 23 response to climate warming. To test this hypothesis, we determined whether temperature 24 responses of denitrification and anammox differed in shelf and estuarine sediments from coastal 25 Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was 26 further assessed in a 12-week laboratory microcosm experiment. Temperature responses, as 27 characterized by thermal optima (T_{opt}) and apparent activation energy (E_a) , were determined by 28 measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging 29 from 3 to 59°C. With a few exceptions, T_{opt} and E_a of denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments, Ea was 30 31 somewhat lower for anammox compared to denitrification across all treatments. However, 32 T_{opt} did not differ between processes, and neither E_a nor T_{opt} changed with warming or carbon 33 addition. Thus, the two processes behaved similarly in terms of temperature response, and this 34 response was not influenced by warming. This led us to reject the hypothesis that anammox is 35 more cold-adapted than denitrification in our study system. Overall, our study suggests that 36 temperature responses of both processes can be accurately modeled for temperate regions in the 37 future using a single set of parameters, which are likely not to change over the next century as a 38 result of predicted climate warming. We further conclude that climate warming will not directly 39 alter the partitioning of N flow through anammox and denitrification.

40

Nitrate reduction temperature responses

41 Introduction

Marine nitrogen (N) availability affects both regional and oceanic primary productivity as 42 well as regional susceptibility to eutrophication (Ryther & Dunstan, 1971; Perry & Eppley, 1981; 43 44 Diaz & Rosenberg, 2008). An important oceanic N sink is via microbially mediated N removal, particularly in coastal and continental shelf sediments, which receive and remove 50-80 Tg N y⁻¹ 45 from terrestrial and marine sources (Howarth et al., 1996; Galloway et al., 2004; Gruber & 46 47 Galloway, 2008). Benthic N removal occurs through denitrification and anaerobic ammonium oxidation (anammox), both of which are anaerobic processes that reduce NO_3 or NO_2 to N_2 . 48 49 While denitrification is primarily a heterotrophic process that uses NO_3^- to oxidize organic carbon, anammox uses NO_2^- to oxidize NH_4^+ and is primarily autotrophic. However, anammox 50 depends on organic carbon mineralization indirectly as a source of NH₄⁺. Both denitrification 51 52 and anammox are microbially mediated enzymatic processes that may respond differently to 53 changes in temperature (Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004; Brin et al., 2014). 54 As temperatures in coastal waters are predicted to continue to rise over the next century (Nixon 55 et al., 2004; Christensen et al., 2007), differences in temperature responses between processes 56 could alter the flux of N through denitrification versus anammox. 57 The temperature response of an enzymatic process can be described by its activation

energy (E_a), which reflects the increase in rate with increase in temperature (temperature dependence), as well as its thermal optimum (T_{opt}), the temperature at which rates are maximal (Arrhenius, 1915). In nature, the temperature response of a biogeochemical processes is determined by the combined temperature response of the assemblage of organisms performing the reactions in any given environment (Allen *et al.*, 2005; Hall *et al.*, 2008, 2010; Yvon-Durocher *et al.*, 2014). Ecosystem level processes may display distinct temperature dependence,

64	as has been demonstrated for photosynthesis and respiration (Yvon-Durocher et al., 2010;
65	Demars et al., 2011). For microbially mediated processes, changes in temperature responses
66	could reflect: 1) changes at the cellular level, through physiological acclimation by individual
67	microbial strains; or 2) changes at the microbial population level, through changes in abundance
68	of strains adapted to different temperatures (Angilletta Jr., 2009; Hall et al., 2010; Crowther &
69	Bradford, 2013). However, rates or temperature responses may be more strongly limited by other
70	factors than temperature in the environment, such as substrate supply. Thus, in some cases there
71	may not be a strong selective advantage to adapt to changes in temperature (Hartley et al., 2007,
72	2008; Crowther & Bradford, 2013).
73	The hypothesis that temperature may be a key driver of the relative importance of
74	denitrification and anammox as N loss pathways was provided by studies in permanently cold
75	sediments, which found that anammox was relatively more favored over denitrification at colder
76	temperatures (Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004). More recent studies
77	examining seasonal patterns or temperature responses of anammox and denitrification rates in
78	marine sediments also support anammox being cold-adapted or hindered at higher temperatures
79	(Teixeira et al., 2012; Brin et al., 2014; Canion et al., 2014a, 2014b). Besides temperature,
80	availability of organic C likely exerts a strong influence on the relative importance of anammox
81	and denitrification as N loss pathways, with organic C favoring denitrification over anammox
82	(Thamdrup & Dalsgaard, 2002; Engström et al., 2005). As temperature also influences organic
83	matter decomposition rates and therefore organic C availability, the effects of temperature could
84	be mediated indirectly through changes in organic C availability rather than as a direct result of
85	inherent differences in enzyme kinetics between the anammox or denitrification pathway
86	(Isaksen & Jørgensen, 1996; Canion et al., 2014a; Brin et al., 2015).

Nitrate reduction temperature responses

87	Despite indications that anammox and denitrification rates may respond differently to
88	temperature, this control has only been examined in a few studies (Dalsgaard & Thamdrup,
89	2002; Rysgaard et al., 2004; Canion et al., 2014a, 2014b). Furthermore, it is unknown whether
90	changes due to climate warming may alter not only rates but also the temperature dependence of
91	each process (King & Nedwell, 1984; Acuña et al., 2008; Robador et al., 2009; Perkins et al.,
92	2012). Differences in temperature dependence of each process over the range of temperatures
93	experienced <i>in situ</i> could alter the relative rates of each process, and thus its contribution to N_2
94	production (Holtan-Hartwig et al., 2002). Furthermore, climate warming could have indirect
95	effects on temperature dependence by influencing organic C availability. This could occur if
96	warming alters the deposition of organic C to benthic sediments, e.g. via changes in spring
97	phytoplankton blooms in coastal ecosystems (Sommer & Lengfellner, 2008; Nixon et al., 2009;
98	Lewandowska & Sommer, 2010), or the rate of consumption of sediment organic C (Alsterberg
99	<i>et al.</i> , 2012).

100 We have examined controls on anammox and denitrification in temperate marine 101 sediments previously by measuring potential rates in field collected samples over a seasonal 102 cycle and in a separate microcosm experiment (Brin et al., 2014, 2015). In this paper, we report 103 new measurements on the temperature responses of anammox and denitrification rates in the 104 same sediments, to directly test the hypothesis that anammox and denitrification have different temperature responses. We asked whether T_{opt} or E_a 1) vary between anammox and 105 106 denitrification, 2) vary by sampling site or season within each process, and 3) can be altered by 107 manipulations of temperature or organic C availability in a microcosm experiment.

108 Materials and Methods

109 Seasonal study

110 To determine how temperature responses varied by site and season, two study sites were 111 sampled in coastal Rhode Island, USA: an inner continental shelf site, Rhode Island Sound 112 (RIS2) and an estuarine site, Providence River Estuary (PRE) (i.e., Heiss et al., 2012; Brin et al., 113 2014). These sites will be referred to as shelf and estuarine sites, respectively. The shelf site had 114 a water depth of 38 m, and bottom water temperatures were between 7 and 17°C during sampling 115 dates. The estuarine site had a water depth of 5 m and greater seasonal temperature variation, 116 with measured bottom water temperatures between 3 and 22°C across sampling dates. Sediments 117 at both sites were fine-grained, with a higher organic carbon content at the estuarine site (2.6%)118 than the shelf site (0.8%) (NC2100 Elemental Analyzer). 119 The shelf site was sampled in January, June, July, and September 2011 and March 2012, 120 and the estuarine site was sampled in June and August 2011 and January 2012. At the shelf site, 121 PVC tubes were fastened to the inside of a box core that was deployed from the research vessel 122 to obtain intact sediment cores. At the estuarine site, intact cores were collected into PVC tubes 123 (10 cm inner diameter) using a pull corer. After collection, the cores were immediately 124 transported back to the laboratory at near-*in situ* temperature. Sediment cores were held in the 125 dark at *in situ* temperature under air-bubbled site water in aquaria. This approach was taken 126 because water columns at the sites were generally well mixed, indicating that bottom water was 127 near air saturation. O₂ microprofiles were measured in the cores 1-4 days after sample collection 128 to determine the O₂ penetration depth, as described previously (Brin et al., 2014). Cores were then removed from aquaria and a 1 cm depth layer of sediment just below the O₂ penetration 129 130 depth (<0.5 cm) was extruded from the core tube, sliced off, and collected for temperature

Page 7 of 32

Global Change Biology

Nitrate reduction temperature responses

131	response measurements. This depth interval was the focus of this study as it contained the NO_3^-
132	reducing layer, based on O_2 penetration depth and concentration of NO_3^- in porewater profiles
133	(Brin et al., 2014). Sediment from 4-5 cores corresponding to any given site and sampling date
134	were pooled to obtain enough sediment to conduct temperature response measurements.
135	
136	Microcosm experiment
137	A total of fifteen microcosms were set up and maintained as described previously, using
138	sediment collected at the shelf site in March 2012 (Brin et al., 2015). Briefly, microcosms
139	consisted of sieved (1 mm) surface sediment (0-4 cm depth interval) layered approximately 4 cm
140	deep in glass pans, each placed in an aquarium containing 6 L of 0.2 μ m-filtered Narragansett
141	Bay seawater (salinity 32), which was kept air saturated with aquarium pumps. Half of the
142	overlying water was replaced every two weeks to prevent buildup of nutrients or other
143	compounds. All microcosms were initially held at 4°C for 16 days, after which three microcosms
144	were destructively sampled, and potential rate experiments were conducted (t ₀ experiments). The
145	microcosms were then exposed to temperature treatments by maintaining half of the microcosms
146	at 4°C and shifting the other half to 17°C. This temperature manipulation represents seasonal
147	minimum and maximum temperatures at the site (Emery & Uchupi, 1972; Brin et al., 2014).
148	Carbon was added biweekly to half of the microcosms at either temperature in the form of
149	Chlorella algae, in the form of a suspension that was gently mixed into the top 1 cm of sediment
150	at a rate equivalent to 3.1 μ mol C cm ⁻² d ⁻¹ , which is expected to maintain sediment labile C
151	availability (Brin et al., 2015). This resulted in four treatments in a full factorial design, referred
152	to here as 4°C, 4°C+C, 17°C and 17°C+C, with three replicate aquaria in each treatment. O_2
153	consumption was increased by both carbon addition and temperature. O ₂ penetration into the

154 sediment was at most 0.5 cm, with shallower penetration in sediments with greater O_2 155 consumption, indicating that added organic C reached anoxic layers in all the microcosms. 156 Treatments were maintained for 12 weeks, after which point the overlying water was aspirated 157 off and the contents of each pan were collected into a beaker for temperature response 158 measurements. 159 160 *Temperature responses of denitrification and anammox potential rates* 161 Sediment from a given site or microcosm replicate was homogenized in a beaker, and 1.5 162 mL of this sediment was transferred into replicate vials (5.9 mL, 93 replicate vials per site or 31 163 replicate vials per microcosm replicate) to conduct parallel incubations at different temperatures. 164 The headspace of the vials was made anoxic by purging the headspace with helium, and vials 165 were pre-incubated overnight at the associated *in situ* or experimental microcosm temperature to 166 remove ambient porewater NO_x . For the microcosm experiment, replicates were maintained 167 within the thermoblock, yielding 3 measurements of E_a for each treatment. 168 Temperature responses were measured using a thermal gradient incubator (thermoblock) 169 similar to Rysgaard et al. (2004). The thermoblock consisted of a 1.8 m long piece of aluminum 170 with a silicone rubber heater on one side, a Peltier cooler at the other, and 31 parallel rows of 3 171 holes (vial wells) along its length to fit the vials. This created a stable linear temperature gradient 172 with endpoints at 2.8 ± 0.7 °C and 58.9 ± 0.8 °C (mean \pm s.d.), as determined by measurement of 173 temperatures in vial wells before and after experiments, as well as with temperature probes 174 embedded in the thermoblock during all incubations. The vials were transferred from their pre-175 incubation temperature into the thermoblock for approximately 90 minutes to allow for complete 176 temperature equilibration of sediments. Potential rate measurements were commenced after the

Nitrate reduction temperature responses

90 min equilibration period by adding 50 μ L of ¹⁵NO₃⁻⁺¹⁴NH₄⁺ (100 nmol N mL⁻¹ sediment) to 177 the vials. After 5-50 min incubations in the presence of added ${}^{15}NO_3^{-}+{}^{14}NH_4^{+}$, all reactions were 178 completely stopped by adding 100 µL 7M ZnCl₂. The amount of ¹⁵N-N₂ that accumulated in 179 180 vials during the incubation was used to determine rates of denitrification and anammox. Shorter 181 incubations were conducted for sediments with higher inherent rates, such as estuarine 182 sediments. Rates were plotted as a function of temperature in the thermoblock, which by 183 definition is referred to as a thermal profile in this study. 184 ¹⁵N-N₂ production in the vials was measured with an isotope ratio mass 185 spectrophotometer (Isoprime CF-IRMS interfaced with Multiflow-Bio Unit) and rates were 186 calculated as described in Thamdrup and Dalsgaard (2002). By convention, the percent of N_2 187 production accounted for by anammox is abbreviated as ra (relative anammox), and calculated as 188 100 X (anammox) / (anammox + denitrification). 189 In addition to thermoblock experiments, parallel sets of potential rate measurements in 190 triplicate vials were run to serve as different controls, as follows. One set of vials received unlabeled NO_3^- and NH_4^+ and was incubated at *in situ* temperature in the seasonal study, or 17°C 191

192 for the microcosm experiment, in order to assess NO_3^- concentrations remaining in the vials after

193 time intervals that were used in thermoblock incubation. This confirmed that NO_3^- was not

194 depleted during incubations. Three additional ¹⁵N isotope additions were run for samples

195 collected on the different sampling dates at the estuarine and shelf sites. These incubations were

196 done at *in situ* temperature, in parallel to thermoblock incubations. One incubation received the

197 same ${}^{15}NO_3 + {}^{14}NH_4$ addition as in the thermoblock incubation, with four equally spaced

198 measurement time points starting immediately after N addition, confirming linear production of

199 $^{29}N_2$ and $^{30}N_2$ during the incubation. An additional incubation received $^{15}NH_4^+ + {}^{14}NO_3^-$, and

another received ${}^{15}NH_4^+$ alone, confirming the presence or absence of anammox and that N₂ was 200 201 not produced by some other process independent of NO_3^- reduction (Yang *et al.*, 2012). The rates from incubations with added ${}^{15}NH_4^{+}+{}^{14}NO_3^{-}$ or ${}^{15}NH_4^{+}$ alone were reported previously (Brin et 202 203 al., 2014), and those results are consistent with the relative rates of anammox reported in this 204 study. Vials with no added N were also included at the beginning of the experiment to correct for any residual ${}^{14}NO_3$ that might have remained after the pre-incubation. The fraction of ${}^{15}N$ -205 labelled NO₃⁻ in the incubations, accounting for the fraction of ${}^{15}N$ in added ${}^{15}NO_3$ ⁻ (i.e., 0.99), 206 207 was >0.96 across all incubations. 208 209 Statistical analysis 210 Statistical analyses were conducted using R version 2.15.0 (R Development Core Team).

211 For all analyses, statistical tests were considered significant at the p<0.05 level.

212 To statistically define T_{opt}, a general additive model was fit to each profile using the R 213 package mgcv (Wood, 2006, 2011; Zuur et al., 2009), using cubic regression splines and cross-214 validation. Temperatures with modeled rates that fell within the 95% confidence interval of the maximum rate were all considered to be T_{opt}. Therefore, the T_{opt} values reported below reflect 215 216 this statistically defined range. One exception was made for denitrification in PRE sediments in 217 January 2012, for which there was a double peak; both peaks were subject to this analysis and considered to be part of T_{opt}. If the range in T_{opt} overlapped between any given comparison of 218 219 samples, we considered T_{opt} to be not significantly different. Whether relationships between T_{opt} 220 and temperature in the seasonal study or microcosm experiment were significant were 221 determined with linear regression (p < 0.05).

Page 11 of 32

Global Change Biology

Nitrate reduction temperature responses

222	Temperature-rate relationships were examined with the linearized form of the Arrhenius					
223	equation with a standardized temperature (Rysgaard et al., 2004; Yvon-durocher et al., 2010):					
224	(1) $\ln[\text{Rate}(T)] = -E_a * (1/kT - 1/kT_c) + \ln[\text{Rate}(T_c)]$					
225	where T_c is the standardized temperature of 15°C (Perkins <i>et al.</i> , 2012); ln[Rate(T_c)] is the					
226	Arrhenius constant in the traditional derivation; E_a is the apparent activation energy for the					
227	measured process; k is the Boltzmann constant (8.62 * 10^{-5} eV K ⁻¹); and T is the measurement					
228	temperature in Kelvin. E_a is calculated as the negative slope of the linear regression through the					
229	linear range of the thermal profile below T _{opt} . E _a values in eV and kJ mol ⁻¹ are presented here to					
230	compare directly with previous work on both nitrogen cycling (kJ mol ⁻¹) and ecosystem					
231	respiration (eV). In the seasonal study, the standard error in E_a was estimated from regression					
232	lines in Arrenhius plots, whereas in the microcosm experiment, standard error was determined					
233	across microcosm replicates. Relationships between the linear intercept (rate at 15°C) and <i>in situ</i>					
234	temperature were assessed with linear regression.					
235	We used similar linear mixed effects models using the function <i>lme</i> within the R package					
236	<i>nlme</i> (Pinheiro <i>et al.</i> , 2016) to test for differences in E_a between processes, sampling sites, or					
237	microcosm treatments (Zuur et al., 2009). Three datasets were analyzed corresponding to the					
238	seasonal study, microcosm experiment, or the combined data. For each analysis, models					
239	included the following main effects: measurement temperature, site or treatment, process, and					
240	interactions between temperature and both site/treatment and process. For each analysis, we used					
241	Akaike information criterion (AIC) scores to compare three models with all main effects to					
242	determine the random effects structure of the data: with no random effects; with random					
243	intercepts; and with random slopes and intercepts. Random effects assessed variation at the level					
244	of individual and distinct thermal profiles. As such, sampling date (for the seasonal study) and					

Page 12 of 32

Nitrate reduction temperature responses

245	treatment replicate (for the microcosm study) were treated as random effects on the slope and
246	intercept. Comparisons between these three models indicated whether the random effects term
247	varied in slope (E _a) as well as intercept (magnitude of rates). We continued with the model with
248	the lowest AIC score to test for significance of main effects. For all microcosm analyses, models
249	with random slopes and intercepts had lowest AIC scores and were selected further analysis. E_a
250	was considered to vary significantly for main effects if their interaction with temperature was
251	significant. For example, to assess differences in E_a across sites, we assessed whether there was a
252	significant interaction between site and temperature, which would indicate that the relationship
253	of rate with temperature varied by site.
254	In the seasonal study, within each site and process, we further explored which sampling
255	dates contributed to differences in apparent activation energies (i.e., denitrification or anammox)
256	using a similar linear mixed modelling approach in which temperature was the sole main effect.

257 Select dates were removed to determine their effect on random effects structures.

Nitrate reduction temperature responses

258 <u>Results</u>

259 Temperature responses by site and season

260 Rates of denitrification and anammox increased with temperature up to 20-35°C, with 261 declining rates thereafter (Fig. 1a-d). There were strong seasonal differences in absolute rates 262 within a site (sampling date p < 0.001), particularly for denitrification in shelf sediments, with the 263 lowest rates in January 2011 and highest rates in March 2012 (Fig. 1a). Potential denitrification 264 reached a higher maximum rate in estuarine (PRE) compared to shelf (RIS2) sediments, but the 265 range in maximum rates between the two sites overlapped, indicating strong potential for 266 denitrification at both sites during the sampling period (Fig. 1a vs. b). In shelf sediments, 267 potential anammox rates were 2-6 times lower than denitrification rates (Fig 1a vs. c). Rates 268 were not related to *in situ* temperatures for either site or process. In estuarine sediments, anammox rates were undetectable or close to the detection limit (<1 nmol N h⁻¹ mL⁻¹ sediment) 269 270 (Fig. 1d). We therefore did not calculate T_{opt} and E_a values for anammox at the estuarine site. 271 The range in T_{opt} was 18-35°C for denitrification and 22-33°C for anammox (Table S1, Fig. 2). T_{opt} overlapped for anammox and denitrification on each sampling date. There was no 272 273 relationship between T_{opt} and *in situ* temperature, nor was there a consistent pattern in T_{opt} across 274 sites or seasons. Within each site and process, T_{opt} overlapped for all sampling dates, with the 275 exception of denitrification in January 2011 in shelf sediments, which had a narrower profile and higher T_{opt} than September and March (Fig. 2). The thermal profile for denitrification in 276 277 estuarine sediments in January 2012 had a double peak that bracketed those for other seasonal 278 measurements.

Apparent E_a values were between 0.40 and 0.63 eV (38.5 and 60.4 kJ mol⁻¹) for
denitrification in shelf sediments, 0.36 and 0.69 eV (34.3 and 66.9 kJ mol⁻¹) for anammox in

281	shelf sediments, and 0.37 and 0.55 eV (35.8 and 53.0 kJ mol ⁻¹) for denitrification in estuarine
282	sediments (Table S1, Fig. 1e-g). Apparent E _a did not differ significantly between sites for
283	denitrification nor between denitrification and anammox (linear mixed effects model, $p>0.05$).
284	The mixed model with the lowest AIC score included both random slope and intercept,
285	indicating that E _a differed across sampling dates. Differences in denitrification E _a by sampling
286	date were driven by high E_a at the shelf site in January 2011 and low Ea at the estuarine site in
287	June 2011, as models without random slopes became optimal when these dates were omitted.
288	Anammox E_a also differed by date in shelf sediments, driven by higher E_a values in July and
289	September 2011. However, in the full model, the variance was much greater for the intercept
290	(capacity; $d^2=0.40$) than for the slope (E _a ; $d^2=0.0085$), indicating that differences among dates
291	were more dependent on overall capacity than temperature dependence.
292	Across all thermoblock measurements in shelf sediments, ra ranged from negligible to
293	62%. In 3 out of 5 sampling dates, there was no change in <i>ra</i> as a function of thermoblock
294	temperature across a range of 3-35°C (Fig. 3). However, in January 2011, ra was negatively
295	correlated with temperature (p <0.001, R =-0.89), decreasing from 62% at 3°C to 28% at 35°C.
296	This switch to a negative correlation was driven not by a change in anammox temperature

297 dependence or capacity across sampling dates, but by a change in the shape of the denitrification

thermal profile on this particular date (Fig. 1a, c). In contrast, in September 2011, *ra* was

299 positively correlated with temperature (*p*=0.001, *R*=0.70) (Fig. 3).

300

301 *Microcosm experiment*

Incubating microcosm sediments at 4°C without C addition for 12 weeks did not change
 denitrification rates compared to t₀ measurements, while anammox rates decreased slightly,

Nitrate reduction temperature responses

304	relative to the t_0 control (Fig. 4a, b). Contrary to expectations, denitrification rates decreased
305	significantly in 17°C treatments, with or without C, relative to t_0 , as well as in the 4°C treatment
306	with C (Fig. 4a; linear mixed effects model with random slope and intercept, $p < 0.001$).
307	Anammox rates showed a similar decrease with treatments as denitrification (Fig. 4b; linear
308	mixed effects model, $p < 0.001$). T _{opt} overlapped for anammox and denitrification, as well as
309	across treatments for each process (Fig. 2, Table S1). Similarly, T _{opt} in the microcosm
310	experiment did not differ from the seasonal study, although ranges were more consistent in the
311	microcosm experiment (Fig. 2).
312	The sediment that was used in the microcosm experiment was from March 2012, when E_a
313	of anammox was the lowest across sampling dates (Table S1). This lower E _a was reflected in the
314	microcosm experiment, as E _a was significantly lower for anammox than denitrification (linear
315	mixed effects model, process x temperature interaction $p < 0.001$). Apparent E _a values were
316	between 0.38 and 0.48 eV (36.5 and 46.4 kJ mol ⁻¹) for denitrification and 0.20 and 0.32 eV (19.3
317	and 30.8 kJ mol ⁻¹) for anammox. However, E _a was not significantly different between treatments
318	for either process (Table S1, Fig. 4c, d), and as with the seasonal study, variance was much
319	greater for the intercept (capacity; $d^2=0.026$) than for the slope (E _a ; $d^2=0.0014$). Furthermore,
320	neither denitrification nor anammox E_a differed significantly between the microcosm experiment
321	and the seasonal study.

322 **Discussion**

323 The denitrification T_{opt} values measured in this study (21 to 35°C) indicate a mesophilic 324 community of denitrifiers in temperate Rhode Island sediments. Given overlapping T_{opt} and 325 mostly similar apparent E_a values, there was no indication of a specifically cold- or warm-326 adapted population of denitrifiers that developed seasonally, between sites, or in response to 327 experimentally manipulated temperatures. This indicates functionally equivalent denitrifier 328 populations in terms of temperature response, despite variation in rates (Fig. 1e-g, 4 c-d). Furthermore, warmest *in situ* temperatures were within the range of T_{opt}, suggesting that 329 330 denitrifiers were reasonably well adapted to the annual temperature regime at the sites. Our 331 results agree with the general finding that denitrification rates display a mesophilic T_{opt} and 332 comparable E_a values in a broad range of sediments from temperate to Arctic systems (Dalsgaard 333 & Thamdrup, 2002; Rysgaard et al., 2004; Canion et al., 2014a, 2014b). This implies that 334 relatively large temperature changes from the Arctic to temperate regions do not cause 335 significantly different temperature responses for denitrification. In contrast, denitrification in 336 subtropical sediments has been shown to have distinctly higher T_{opt} and E_a values compared to 337 colder sediments (Canion et al., 2014b). Thus, warmer climates may cause a change in the 338 temperature response of denitrification. However, the degree of warming needed to cause such a 339 change is probably greater than the 2-2.5°C warming that is predicted to occur in our study 340 region over the next century (Meehl et al., 2007; Taboada & Anadón, 2012; Mills et al., 2013). 341 Previous studies have suggested that anammox bacteria are more cold-adapted than denitrifiers, due to lower T_{opt} (9-18°C) or E_a in anammox bacteria, and measurements of higher 342 343 ra values at lower temperatures (Dalsgaard & Thamdrup, 2002; Rysgaard et al., 2004; Canion et 344 al., 2014a, 2014b). However, most of these studies have been conducted in permanently cold

Nitrate reduction temperature responses

345 marine sediments. The present study is one of the few that has been conducted in temperate 346 sediments (Canion et al., 2014b). We found that the range in T_{opt} values of denitrification and 347 anammox were not significantly different in the seasonal study or microcosm experiment (Fig. 2, 348 Table S1). E_a of anammox was significantly lower than E_a of denitrification in the microcosm 349 experiment, which appeared to be driven by initial values of E_a in the sediments used to set up 350 the microcosm experiment rather than any significant influence of experimental treatments. E_a 351 values of anammox and denitrification were not significantly different across the seasonal study, 352 indicating that there was not an overall consistent difference in E_a between the two processes. 353 Cumulatively, we conclude that overall populations of active anammox bacteria are not more 354 cold-adapted than denitrifiers in our study system. Similar to denitrification, the results do not 355 indicate consistent seasonal shifts in temperature responses of anammox. On the one sampling 356 date when ra did decrease with increasing temperature (January 2011), this was driven by a shift 357 in the temperature response of denitrification rather than anammox. The correlation between 358 ra and temperature across seasons that was previously noted (Brin et al., 2014) may therefore 359 have been due to other factors besides temperature that vary seasonally, rather than relatively 360 faster rates of denitrification compared to anammox at warmer temperatures. As anammox may 361 depend on denitrification for a source of NO₂⁻ (Trimmer *et al.*, 2003; Risgaard-Petersen *et al.*, 362 2004; Meyer et al., 2005; Brin et al., 2014), similar temperature responses overall might reflect 363 the relationship between the two processes.

The capacity for denitrification, as reflected in thermal profiles and in the linear intercept of Arrhenius plots (Fig. 1, 3), changed across sampling dates in the seasonal study as well as with treatment in the microcosm study. These changes in magnitude could be associated with changes in the abundance of denitrifier populations, the amount of enzyme being produced by

368 the denitrifiers present, substrate availability, or a combination of factors. The lack of a 369 correlation between linear intercept and *in situ* temperature in the seasonal study suggests that temperature effects may be indirect, and that potential rates are controlled by other factors in 370 371 addition to temperature. One potential control of denitrification rates in coastal and marine 372 sediments is organic C availability, with higher rates reflecting greater C availability (Dalsgaard 373 et al., 2005; Brin et al., 2014). Experiments with Arctic sediments demonstrated that addition of 374 organic acids (i.e., acetate, lactate) significantly increased sulfate reduction or denitrification 375 rates in thermoblock experiments (Isaksen & Jørgensen, 1996; Canion et al., 2014a). Similarly, 376 we expected that organic C addition in our microcosm experiment would increase denitrification 377 rates relative to microcosms without C addition. Surprisingly, organic C addition did not yield 378 this result. The lack of response of denitrification rates in our microcosm experiment may have 379 been due to competition for NO_3^{-1} with other processes, as potential dissimilatory nitrate 380 reduction to ammonium (DNRA) rates were stimulated by the organic C addition, while potential 381 denitrification rates were not (Brin et al., 2015). The form of organic C added may also have had 382 an influence on this result, with regular additions of freeze-dried phytoplankton favoring DNRA 383 bacteria over denitrifiers.

The aim of this study was to determine how shifts in temperature and C availability through seasonal changes or experimental manipulations influence the temperature responses of anammox or denitrification. We found that temperature responses of anammox and denitrification were more similar to each other than previously reported (Dalsgaard & Thamdrup, 2002; Rysgaard *et al.*, 2004; Canion *et al.*, 2014b), and both processes were characterized as mesophilic instead of anammox being more cold-adapted than denitrification. Overall, our results suggest that predicted warming in our study region over the next century will not act

Nitrate reduction temperature responses

- 391 through direct temperature effects to decrease the contribution of anammox to N₂ production
- 392 relative to denitrification. In contrast, strong differences in absolute rates with season suggest
- that factors other than temperature dependence are important regulators of relative rates of
- anammox and denitrification.

395 Acknowledgments

396 Thank you to Caroline Scanlan, Phil Arevalo, Michaeline Nelson, Amber Hardison and 397 Heather Leslie for help in the lab and the field. Thanks also to Elise Heiss, Lindsey Fields, 398 Shelley Brown, Wally Fulweiler, Scott Nixon, Bethany Jenkins, Jane Tucker, Steve Granger, 399 Rodman Sykes, Rebecca Robinson, Stephen Porder and Aaron McFarlane for help in the project, 400 and to Charlie Vickers, Mike Packer and Brian Corkum for help with thermoblock construction. 401 We are grateful to Capt. Rodman Sykes of the F/V Virginia Marise and his crew for assisting 402 with sampling. We thank two anonymous reviewers whose comments have helped to improve 403 this manuscript. This material is based upon work supported by the National Science Foundation 404 under Grant No. OCE-0852289 to JJR and OCE-0852263, OCE-0927400 and OCE1238212 to 405 AEG, and Rhode Island Sea Grant to JJR.

406 **References**

- Acuña V, Wolf A, Uehlinger U, Tockner K (2008) Temperature dependence of stream benthic
 respiration in an Alpine river network under global warming. *Freshwater Biology*, 53,
 2076–2088.
- Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual
 metabolism. *Functional Ecology*, 19, 202–213.
- Alsterberg C, Sundbäck K, Hulth S (2012) Functioning of a shallow-water sediment system
 during experimental warming and nutrient enrichment. *PloS one*, 7, e51503.
- Angilletta Jr. MJ (2009) *Thermal Adaptation: A Theoretical and Empirical Synthesis*. Oxford
 University Press, 320 pp.
- 416 Arrhenius S (1915) *Quantitative Laws in Biological Chemistry* (ed G. Bell and Sons L). London,
 417 1-164 pp.
- Brin LD, Giblin AE, Rich JJ (2014) Environmental controls of anammox and denitrification in
 southern New England estuarine and shelf sediments. *Limnology and Oceanography*, 59,
 851–860.
- Brin LD, Giblin AE, Rich JJ (2015) Effects of experimental warming and carbon addition on
 nitrate reduction and respiration in coastal sediments. *Biogeochemistry*, 125, 81–95.
- 423 Canion A, Overholt WA, Kostka JE, Huettel M, Lavik G, Kuypers MMM (2014a) Temperature
 424 response of denitrification and anammox rates and microbial community structure in Arctic
 425 fjord sediments. *Environmental Microbiology*, 16, 3331–3344.
- 426 Canion A, Kostka JE, Gihring TM et al. (2014b) Temperature response of denitrification and
 427 anammox reveals the adaptation of microbial communities to in situ temperatures in
 428 permeable marine sediments that span 50° in latitude. *Biogeosciences*, 11, 309–320.
- 429 Christensen JH, Hweitson B, Busuioc A et al. (2007) Regional Climate Projections. In: *Climate*430 *Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth*431 *Assessment Report of the Intergovernmental Panel on Climate Change* (eds Solomon S, Qin
 432 D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge
 433 University Press, Cambridge, United Kingdom and New York, NY, USA.
- 434 Crowther TW, Bradford MA (2013) Thermal acclimation in widespread heterotrophic soil
 435 microbes (ed Johnson N). *Ecology Letters*.
- 436 Dalsgaard T, Thamdrup B (2002) Factors controlling anaerobic ammonium oxidation with nitrite
 437 in marine sediments. *Applied and Environmental Microbiology*, 68, 3802–3808.
- 438 Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in
 439 the marine environment. *Research in Microbiology*, **156**, 457–464.
- 440 Demars BOL, Russell Manson J, Ólafsson JS et al. (2011) Temperature and the metabolic
 441 balance of streams. *Freshwater Biology*, 56, 1106–1121.
- 442 Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems.
 443 *Science*, **321**, 926–929.

- Emery KO, Uchupi E (1972) Western North Atlantic Ocean: Topography, Rocks, Structure,
 Water, Life, and Sediments. American Association of Petroleum Geologists, Tulsa,
 Oklahoma, 532 pp.
- 447 Engström P, Dalsgaard T, Hulth S, Aller RC (2005) Anaerobic ammonium oxidation by nitrite
 448 (anammox): Implications for N production in coastal marine sediments. *Geochimica et*449 *Cosmochimica Acta*, 69, 2057–2065.
- Galloway JN, Dentener FJ, Capone DG et al. (2004) Nitrogen cycles: Past, present, and future.
 Biogeochemistry, **70**, 153–226.
- 452 Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle.
 453 *Nature*, 451, 293–296.
- Hall EK, Neuhauser C, Cotner JB (2008) Toward a mechanistic understanding of how natural
 bacterial communities respond to changes in temperature in aquatic ecosystems. *The ISME Journal*, 2, 471–81.
- Hall EK, Singer GA, Kainz MJ, Lennon JT (2010) Evidence for a temperature acclimation
 mechanism in bacteria: An empirical test of a membrane-mediated trade-off. *Functional Ecology*, 24, 898–908.
- Hartley IP, Heinemeyer A, Ineson P (2007) Effects of three years of soil warming and shading
 on the rate of soil respiration: Substrate availability and not thermal acclimation mediates
 observed response. *Global Change Biology*, 13, 1761–1770.
- Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial
 respiration in arctic soil does not acclimate to temperature. *Ecology Letters*, 11, 1092–100.
- Heiss EM, Fields L, Fulweiler RW (2012) Directly measured net denitrification rates in offshore
 New England sediments. *Continental Shelf Research*, 45, 78–86.
- Holtan-Hartwig L, Dörsch P, Bakken LR (2002) Low temperature control of soil denitrifying
 communities: kinetics of N2O production and reduction. *Soil Biology and Biochemistry*, 34,
 1797–1806.
- Howarth RW, Billen G, Swaney D et al. (1996) Regional nitrogen budgets and riverine N & P
 fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. *Biogeochemistry*, 35, 75–139.
- Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate reducing bacteria to permanently cold marine environments. *Applied and Environmental Microbiology*, 62, 408–414.
- King D, Nedwell DB (1984) Changes in the nitrate-reducing community of an anaerobic
 saltmarsh sediment in response to seasonal selection by temperature. *Journal of General Microbiology*, 130, 2935–2941.
- 479 Lewandowska A, Sommer U (2010) Climate change and the spring bloom: A mesocosm study
 480 on the influence of light and temperature on phytoplankton and mesozooplankton. *Marine* 481 *Ecology Progress Series*, 12, 101–111.
- 482 Meehl GA, Stocker TF, Collins WD et al. (2007) Global Climate Projections. In: *Climate*

Nitrate reduction temperature responses

483 484 485 486	Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergoernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), pp. 747–845. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
487 488 489	Meyer RL, Risgaard-Petersen N, Allen DE (2005) Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment. <i>Applied and Environmental Microbiology</i> , 71 , 6142–6149.
490 491	Mills KE, Pershing A, Brown C (2013) Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. <i>Oceanography</i> , 26 , 191–195.
492 493 494	Nixon SW, Granger S, Buckley BA, Lamont M, Rowell B (2004) A one hundred and seventeen year coastal water temperature record from Woods Hole, Massachusetts. <i>Estuaries</i> , 27 , 397–404.
495 496 497	Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM (2009) The impact of changing climate on phenology, productivity, and benthic-pelagic coupling in Narragansett Bay. <i>Estuarine, Coastal and Shelf Science</i> , 82 , 1–18.
498 499 500	Perkins DM, Yvon-Durocher G, Demars BOL et al. (2012) Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. <i>Global Change Biology</i> , 1–12.
501 502	Perry MJ, Eppley RW (1981) Phosphate uptake by phytoplankton in the central North Pacific Ocean. <i>Deep Sea Research Part A. Oceanographic Research Papers</i> , 28 , 39–49.
503 504	Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: Linear and nonlinear mixed effects models.
505 506	R Development Core Team R: A language and environment for statistical computing. http://www.r-project.org.
507 508 509	Risgaard-Petersen N, Meyer R, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech NP (2004) Anaerobic ammonium oxidation in an estuarine sediment. <i>Aquatic Microbial Ecology</i> , 36 , 293–304.
510 511 512	Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. <i>Environmental Microbiology</i> , 11 , 1692–703.
513 514	Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox activity in Arctic marine sediments. <i>Limnology and Oceanography</i> , 49 , 1493–1502.
515 516	Ryther JH, Dunstan WM (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine environment. <i>Science</i> , 171 , 1008–1013.
517 518	Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. <i>Global Change Biology</i> , 14 , 1199–1208.
519 520 521	Taboada FG, Anadón R (2012) Patterns of change in sea surface temperature in the North Atlantic during the last three decades: Beyond mean trends. <i>Climatic Change</i> , 115 , 419– 431.

- Teixeira C, Magalhães C, Joye SB, Bordalo A (2012) Potential rates and environmental controls
 of anaerobic ammonium oxidation in estuarine sediments. *Aquatic Microbial Ecology*, 66,
 23–32.
- Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation
 coupled to nitrate reduction in marine sediments. *Applied and Environmental Microbiology*,
 68, 1312–1318.
- Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in
 sediments along the Thames Estuary, United Kingdom. *Applied and Environmental Microbiology*, 69, 6447–6454.
- 531 Wood SN (2006) *Generalized additive models: An introduction with R.* Chapman and Hall/CRC.
- Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation
 of semiparametric generalized linear models. *Journal of the Royal Statistical Society (B)*,
 73, 3–36.
- Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium
 oxidation coupled to iron reduction. *Nature Geoscience*, 5, 538–541.
- 537 Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the
 538 metabolic balance of ecosystems. *Philosophical transactions of the Royal Society of* 539 *London. Series B, Biological sciences*, 365, 2117–26.
- 540 Yvon-durocher G, Allen AP, Montoya JM, Trimmer M, Woodward G (2010) The temperature
 541 dependence of the carbon cycle in aquatic ecosystems. *Advances in Ecological Research*,
 542 43, 267–313.
- 543 Yvon-Durocher G, Allen AP, Bastviken D et al. (2014) Methane fluxes show consistent
 544 temperature dependence across microbial to ecosystem scales. *Nature*, 507, 488–91.
- Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) *Mixed Effects Models and Extensions in Ecology with R.* Springer, New York, NY, 574 pp.
- 547

549 <u>Supporting information captions</u>

- 550 **Table S1** Apparent activation energies (E_a) and thermal optima (T_{opt}) of denitrification and
- anammox in shelf and estuarine sediments and the microcosm experiment. Asterisks denote
- E_a values that differ significantly from others within the same site and process.

553 **Figure captions**

- **Figure 1**. Thermal profiles (a-d) and Arrhenius plots (e-h) of denitrification and anammox in
- shelf and estuarine sediments. Panels are as follows: Denitrification in shelf (a, e) and estuarine
- (b, f) sediments; anammox in the shelf (c, g) and estuarine (d, h) sediments. Curves in (a)
- 557 through (d) are general additive models fit to the data, and asterisks on the x-axis denote in situ
- bottom water temperatures at the time of sampling. Lines in (e) through (h) are significant linear
- regressions, the negative slopes of which are the activation energy (E_a) .
- 560 **Figure 2**. Denitrification and anammox T_{opt} for all seasonal sampling dates and microcosm
- treatments, and bottom water *in situ* or microcosm incubation temperature. Error bars denote T_{opt}
- 562 ranges.
- 563 Figure 3. Relative contribution of anammox to N_2 production (*ra*) in shelf sediments as a
- 564 function of incubation temperature.
- 565 **Figure 4.** Thermal profiles (a, b) and Arrenhius plots (c, d) of denitrification (a, c) and anammox
- 566 (b, d) in the microcosm experiment. Curves in (a) and (b) are general additive models fit to the
- 567 data. Lines in (c) and (d) are significant linear regressions, the negative slopes of which are the
- 568 activation energy (E_a).

Page 27 of 32

Global Change Biology

Nitrate reduction temperature responses

569 Supporting information

- 570 **Table S1** Apparent activation energies (E_a) and thermal optima (T_{opt}) of denitrification and
- anammox in shelf and estuarine sediments and the microcosm experiment. Asterisks denote
- E_a values that differ significantly from others within the same site and process.

Site and process	Treatment or sampling date	Seasonal or microcosm temperature (°C)	Activation energy [#] (kJ mol ⁻¹)	Activation energy [#] (eV)	T _{opt} (°C)	T _{opt} range (°C)
Shelf	January 2011	6	$60.4 \pm 2.8*$	$0.63 \pm 0.03*$	35.0	33.1 - 35.0
denitrification	June 2011	11	43.7 ± 5.6	0.45 ± 0.06	27.3	19.8 - 33.0
	July 2011	16	50.5 ± 6.6	0.52 ± 0.07	27.5	23.8 - 31.3
	September 2011	17	38.5 ± 6.8	0.40 ± 0.07	23.7	18.2 - 27.4
	March 2012	7	43.7 ± 2.9	0.45 ± 0.03	25.4	21.8 - 27.2
Shelf	January 2011	6	38.2 ± 4.1	0.40 ± 0.04	31.1	29.2 - 33.1
anammox	June 2011	11	38.0 ± 3.0	0.39 ± 0.03	23.6	21.7 - 29.2
	July 2011	16	$49.4\pm3.6*$	$0.51\pm0.04*$	27.5	25.7 - 29.4
	September 2011	17	$66.9 \pm 12.3*$	$0.69\pm0.13*$	29.2	27.4 - 31.0
	March 2012	7	34.3 ± 2.6	0.36 ± 0.03	29.0	25.4 - 30.8
Estuary	June 2011	16	$35.8 \pm 2.1*$	$0.37 \pm 0.02*$	31.1	29.2 - 34.9
denitrification	August 2011	22	46.2 ± 4.1	0.48 ± 0.04	26.6	22.7 - 30.4
	January 2012	6	53.0 ± 5.3	0.55 ± 0.05	21.3	19.5 – 23.1
					33.9	23.1 - 37.5
Microcosm	t ₀	4	41.2 ± 2.6	0.43 ± 0.03	24.5	22.7 - 26.3
denitrification	4°C	4	40.2 ± 4.1	0.42 ± 0.04	24.7	22.8 - 26.5
	4°C+C	4	36.5 ± 1.7	0.38 ± 0.02	22.8	21.0 - 26.5
	17°C	17	44.4 ± 0.4	0.46 ± 0.005	23.1	21.3 - 26.8
	17°C+C	17	46.4 ± 1.9	0.48 ± 0.02	23.1	21.3 - 26.8
Microcosm	t ₀	4	30.5 ± 12.1	0.32 ± 0.13	28.1	22.7 - 29.9
anammox	4°C	4	30.8 ± 6.4	0.32 ± 0.07	28.4	24.7 - 32.0
	4°C+C	4	26.3 ± 4.2	0.27 ± 0.04	26.5	24.7 - 28.4
	17°C	17	19.3 ± 9.9	0.20 ± 0.10	26.8	$NA^{\$} - 32.3$
	17°C+C	17	21.5 ± 8.4	0.22 ± 0.09	26.8	21.3 - 30.4

573

574 [#]Ea is the negative of the mean slope \pm s.e. of the regression line in Arrenhius plots

575 corresponding to shelf and estuarine sediments, while in the microcosm experiment, it

- 576 corresponds to the negative mean \pm s.e. of E_a for three replicate aquaria.
- [§]Not able to calculate lower limit as all rates below the maximum rate were within 95%

578 confidence interval of maximum rate.

