1,260 research outputs found

    Liquid chromatography tandem mass spectrometry analysis of synthetic coccidiostats in eggs

    Get PDF
    Coccidiostats are synthetic drugs administered to animals, especially to poultry, to cure coccidiosis. In this paper, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of five synthetic coccidiostats in eggs: clazuril, diclazuril, robenidine, nicarbazin, toltrazuril and its two metabolites. The extraction efficiency was evaluated by testing several solvents, pH, different volumes and time of extraction. The clean-up procedures were optimized using different solid phase extraction cartridges and different eluants. The chromatographic separation was achieved in reversed phase using a gradient of 0.1% formic acid in water and acetonitrile, whereas the MS detection was performed in negative electrospray ionization (ESI) for all the analytes, except for the robenidine. The developed method has been validated according to Commission Decision 2002/657/CE. The validation parameters, as linearity, precision, recovery, specificity, decision limit (CC alpha), detection capability (CC beta), and robustness have been determined. The proposed method resulted simple, fast, and suitable for screening and confirmation purposes

    Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics

    Get PDF
    Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement ("signal-on") or a quenching ("signal-off") effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment

    Determination of Sugar Content in Commercial Fruit Juices by Refractometric, Volumetric and Chromatographic Methods

    Get PDF
    In this paper several approaches are discussed for the direct analysis of the main sugars in different fruit juices. Refractometry, thin layer chromatography, volumetric analysis and high performance liquid chromatography with refractive index detector were tested and the results compared, discussing the advantages and disadvantages of each of them. Whereas the first method gives generically indications on the whole content of sugar and it doesn't require any prior manipulation of the sample, thin layer chromatography is useful only for qualitative purpose, on the other hand the third method, after removal of interferences, makes possible the determination of the reducing and not reducing sugar, and the last one allows the qualitative and quantitative determination of the saccharides singularly. It's very important to have not only knowledge about the chemical analysis of carbohydrates and their physicochemical properties, but especially how the methods can be used in product development for benefit of the public. In the wide range of options for the determination of the mono and disaccharides in beverages, the approach selected must be robust, accurate, powerful and reproducible

    Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity

    Get PDF
    The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications

    Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as ‘protein misfolding’ diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1–100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Calcium-sensing receptor antagonism or lithium treatment ameliorates aminoglycoside-induced cell death in renal epithelial cells

    Get PDF
    AbstractThe aminoglycoside antibiotic gentamicin elicits proximal tubular toxicity and cell death. In calcium-sensing receptor (CaR)-transfected HEK-293 (CaR-HEK) cells and CaR-expressing proximal tubule-derived opossum kidney (OK) cells, chronic gentamicin treatment elicits dose-dependent, caspase-mediated apoptotic cell death. Here we investigated whether the renal cell toxicity of the CaR agonist gentamicin could be prevented by CaR antagonism or by lithium cotreatment which may interfere with receptor-mediated signalling. Chronic treatment of OK and CaR-HEK cells with low concentrations of gentamicin elicited cell death, an effect that was ameliorated by cotreatment with the CaR negative allosteric modulator (calcilytic) NPS-89636. This calcilytic also attenuated CaR agonist-induced ERK activation in these cells. In addition, 1 mM LiCl, equivalent to its therapeutic plasma concentration, also inhibited gentamicin-induced toxicity in both cell types. This protective effect of lithium was not due to the disruption of phosphatidylinositol-mediated gentamicin uptake as the cellular entry of Texas red-conjugated gentamicin into OK and CaR-HEK cells was unchanged by lithium treatment. However, the protective effect of lithium was mimicked by glycogen synthase 3β inhibition. Together, these data implicate CaR activation and a lithium-inhibitable signalling pathway in the induction of cell death by gentamicin in renal epithelial cells in culture

    The extracellular calcium-sensing receptor, CaSR, in fetal development

    Get PDF
    In fetal mammals, serum levels of both total and ionized calcium significantly exceed those in the adult. This relative fetal hypercalcemia is crucial for skeletal development and is maintained irrespectively of maternal serum calcium levels. Elegant studies by Kovacs and Kronenberg have previously addressed the role of the CaSR in creating and maintaining this relative fetal hypercalcemia, through the regulation of parathyroid hormone-related peptide secretion. More recently we have shown that the CaSR is widely distributed throughout the developing fetus, where the receptor plays major, unexpected roles in ensuring growth and maturation of several organs. In this article, we present evidence for a role of the CaSR in the control of skeletal development, and how fetal hypercalcemia, acting through the CaSR, regulates lung development

    Relationship between front-of-pack labeling and nutritional characteristics of food products: An attempt of an analytical approach

    Get PDF
    The adoption of supplementary nutrition information, i.e., front-of-pack labeling (FOPL), on pre-packed food products is advocated as a tool to improve the consumers’ knowledge of the nutrient content or the nutritional quality of foods, but also to drive products reformulation by the food industry. Ultimately, FOPL should help people to select foods in order to compose an overall balanced diet, which is essential for health. However, the extent to which the different FOPL systems proposed in the European Union (EU) (interpretative or informative) are effectively able to convey the information useful to improve both food choices and dietary habits of the consumers is still under debate and needs to be analyzed in detail. The use of 3 FOPL schemes proposed within the EU (Nutri-Score, Keyhole and NutrInform Battery) to compare products available on the Italian market within different food categories, highlights some critical issues: (1) different FOPL provide to consumers different kinds of information; (2) systems based on similar theoretical approaches can provide conflicting information; (3) the algorithms on which interpretative FOPL are based can give the same summary information for products differing in nutrient composition, impact on the overall dietary balance and therefore on the health of people with different characteristics, physiological/pathological conditions, and nutritional requirements; (4) on the other hand, products with similar nutrient composition can obtain different interpretative FOPL; (5) informative systems are generally more complex and require greater both attention and knowledge from the consumer; (6) FOPL based on 100 g of product overlook the role of portion (and frequency of consumption) in determining the nutrient intake without informing on the contribution of a single food to the overall diet; (7) FOPL based on scoring systems could promote the reformulation of selected products, especially with a composition very close to the threshold limits; (8) for the portion-based informative FOPL systems, the incentive for reformulation could essentially involve the reduction of portion size. Finally, the importance of nutritional education interventions, which are required to encourage the use by consumers of informative FOPL systems, cannot be neglected to improve the quality of diets regardless of the FOPL used

    Dietary polyphenol intake, blood pressure, and hypertension: A systematic review and Meta-Analysis of observational studies

    Get PDF
    Background: Dietary polyphenols, including flavonoids, have been the focus of major recent attentions due to their wide content in a variety of foods commonly consumed and the findings from numerous studies showing evidence of an association with positive outcomes on human health. Methods: A systematic search using electronic databases PubMed and EMBASE was performed to retrieve English language studies published from the earliest indexing year of each database to April 2019, reporting on the association between dietary flavonoids intake and hypertension. Results: The search strategy resulted in the final selection of 20 studies including 15 cross-sectional investigations and 7 prospective cohorts (1 study reported on 3 prospective cohorts). 5 prospective cohorts, comprising 200,256 individuals and 45,732 cases of hypertension were included in the quantitative analysis. Analysis by extreme quantiles of intake of flavonoid showed a non-significant association with decreased risk of hypertension (RR (risk ratio): 0.96, 95% CI (confidence interval): 0.89, 1.03). Taking into consideration individual flavonoid subclasses, dietary anthocyanins intake was associated with 8% reduction in risk of hypertension, when comparing highest vs. lowest exposure (RR: 0.92, 95% CI: 0.88, 0.97). Conclusions: Further studies are needed to strengthen the retrieved association between anthocyanins consumption and decreased risk of hypertension and clarify whether total flavonoids or rather individual subclasses may exert beneficial effects on blood pressure

    Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion

    Get PDF
    The extracellular Ca-sensing receptor (CaSR) is a sensor for a number of key nutrients within the body, including Ca ions (Ca2+) and l-amino acids. The CaSR is expressed in a number of specialised cells within the gastrointestinal (GI) tract, and much work has been done to examine CaSR's role as a nutrient sensor in this system. This review article examines two emerging roles for the CaSR within the GI tract – as a mediator of kokumi taste modulation in taste cells and as a regulator of dietary hormone release in response to l-amino acids in the intestine
    • …
    corecore