13 research outputs found

    Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system

    No full text
    In order to evaluate the efficiency of the tetracycline-regulated gene expression system in Drosophila, we have generated transgenic lines expressing a tetracycline-controlled transactivator protein (tTA), with specific expression patterns during embryonic and larval development. These lines were used to direct expression of a tTA-responsive promoter fused to the coding region of either the beta-galactosidase or the homeotic protein Antennapedia (ANTP), under various conditions of tetracycline treatment. We found that expression of beta-galactosidase can be efficiently inhibited in embryos and larvae with tetracycline provided in the food, and that a simple removal of the larvae from tetracycline exposure results in the induction of the enzyme in a time- and concentration-dependent manner. Similar treatments can be used to prevent the lethality associated with the ectopic expression of ANTP in embryos and, subsequently, to control the timing of expression of the homeoprotein ANTP specifically in the antennal imaginal disc. Our results show that the expression of a gene placed under the control of a tetracycline-responsive promoter can be tightly controlled, both spatially by the regulatory sequences driving the expression of tTA and temporally by tetracycline. This provides the basis of a versatile binary system for controlling gene expression in Drosophila, with an additional level of regulation as compared to the general method using the yeast transcription factor GAL4

    The YPWM motif links Antennapedia to the basal transcriptional machinery

    No full text
    HOX genes specify segment identity along the anteroposterior axis of the embryo. They code for transcription factors harbouring the highly conserved homeodomain and a YPWM motif, situated amino terminally to it. Despite their highly diverse functions in vivo, HOX proteins display similar biochemical properties in vitro, raising the question of how this specificity is achieved. In our study, we investigated the importance of the Antennapedia (Antp) YPWM motif for homeotic transformations in adult Drosophila. By ectopic overexpression, the head structures of the fly can be transformed into structures of the second thoracic segment, such as antenna into second leg, head capsule into thorax (notum) and eye into wing. We found that the YPWM motif is absolutely required for the eye-to-wing transformation. Using the yeast two-hybrid system, we were able to identify a novel ANTP-interacting protein, Bric-a-brac interacting protein 2 (BIP2), that specifically interacts with the YPWM motif of ANTP in vitro, as well as in vivo, transforming eye to wing tissue. BIP2 is a TATA-binding protein associated factor (also known as dTAFII3) that links ANTP to the basal transcriptional machinery

    Novel genes and sex differences in COVID-19 severity.

    Get PDF
    Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10-22 and p = 8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10-8) and ARHGAP33 (p = 1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided
    corecore