25 research outputs found

    A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo

    Get PDF
    The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo. Specifically, we developed β-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo β-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study β-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of β-cell physiology in the endogenous islet niche

    Platelet-type 12-lipoxygenase deletion provokes a compensatory 12/15-lipoxygenase increase that exacerbates oxidative stress in mouse islet β cells

    Get PDF
    In type 1 diabetes, an autoimmune event increases oxidative stress in islet β cells, giving rise to cellular dysfunction and apoptosis. Lipoxygenases are enzymes that catalyze the oxygenation of polyunsaturated fatty acids that can form lipid metabolites involved in several biological functions, including oxidative stress. 12-Lipoxygenase and 12/15-lipoxygenase are related but distinct enzymes that are expressed in pancreatic islets, but their relative contributions to oxidative stress in these regions are still being elucidated. In this study, we used mice with global genetic deletion of the genes encoding 12-lipoxygenase (arachidonate 12-lipoxygenase, 12S type [Alox12]) or 12/15-lipoxygenase (Alox15) to compare the influence of each gene deletion on β cell function and survival in response to the β cell toxin streptozotocin. Alox12−/− mice exhibited greater impairment in glucose tolerance following streptozotocin exposure than WT mice, whereas Alox15−/− mice were protected against dysglycemia. These changes were accompanied by evidence of islet oxidative stress in Alox12−/− mice and reduced oxidative stress in Alox15−/− mice, consistent with alterations in the expression of the antioxidant response enzymes in islets from these mice. Additionally, islets from Alox12−/− mice displayed a compensatory increase in Alox15 gene expression, and treatment of these mice with the 12/15-lipoxygenase inhibitor ML-351 rescued the dysglycemic phenotype. Collectively, these results indicate that Alox12 loss activates a compensatory increase in Alox15 that sensitizes mouse β cells to oxidative stress

    State-of-the-art microscopy to understand islets of Langerhans:what to expect next?

    Get PDF
    The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real-time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come

    Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila

    No full text
    Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is clue to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field. (C) 2008 Elsevier Inc. All rights reserved

    Molybdän

    No full text

    Differential stimulation of insulin secretion by GLP-1 and Kisspeptin-10.

    No full text
    β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca(2+)]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca(2+)]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca(2+)]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca(2+) activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca(2+)

    Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila

    No full text
    Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is clue to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field. (C) 2008 Elsevier Inc. All rights reserved

    Differential Stimulation of Insulin Secretion by GLP-1 and Kisspeptin-10 - Figure 1

    No full text
    <p><b>A</b>. Percent of insulin content secreted from intact islets after static incubation at 2.8, 10, or 16.7 mM glucose with and without KP (1 µM, dark gray) or GLP-1 (20 nM, light gray). Secretion from untreated control islets is shown in white. Data are the mean ± S.E. <i>n</i> = 4–19. *(<i>p</i><0.05) and **(<i>p</i><0.001) indicate significance compared to untreated control. <b>B</b>, Glucose-dependent percent change in NAD(P)H from untreated intact islets (circles) and islets treated with KP (1 µM, squares) or GLP-1 (20 nM, triangles) compared to values at 2 mM glucose. Data are the mean ± S.E. <i>n</i> = 9–11. *<i>p</i><0.01.</p
    corecore