60 research outputs found

    Partnerships

    Get PDF

    A novel member of the let-7 microRNA family is associated with developmental transitions in filarial nematode parasites

    Get PDF
    Background: Filarial nematodes are important pathogens in the tropics transmitted to humans via the bite of blood sucking arthropod vectors. The molecular mechanisms underpinning survival and differentiation of these parasites following transmission are poorly understood. microRNAs are small non-coding RNA molecules that regulate target mRNAs and we set out to investigate whether they play a role in the infection event. Results: microRNAs differentially expressed during the early post-infective stages of Brugia pahangi L3 were identified by microarray analysis. One of these, bpa-miR-5364, was selected for further study as it is upregulated ~12-fold at 24 hours post-infection, is specific to clade III nematodes, and is a novel member of the let-7 family, which are known to have key developmental functions in the free-living nematode Caenorhabditis elegans. Predicted mRNA targets of bpa-miR-5364 were identified using bioinformatics and comparative genomics approaches that relied on the conservation of miR-5364 binding sites in the orthologous mRNAs of other filarial nematodes. Finally, we confirmed the interaction between bpa-miR-5364 and three of its predicted targets using a dual luciferase assay. Conclusions: These data provide new insight into the molecular mechanisms underpinning the transmission of third stage larvae of filarial nematodes from vector to mammal. This study is the first to identify parasitic nematode mRNAs that are verified targets of specific microRNAs and demonstrates that post-transcriptional control of gene expression via stage-specific expression of microRNAs may be important in the success of filarial infection

    Partnerships

    Get PDF

    MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region

    No full text
    MicroRNAs (miRNAs) are ∼22-nucleotide noncoding RNAs that can regulate gene expression by directing mRNA degradation or inhibiting productive translation. Dominant mutations in PHABULOSA (PHB) and PHAVOLUTA (PHV) map to a miR165/166 complementary site and impair miRNA-guided cleavage of these mRNAs in vitro. Here, we confirm that disrupted miRNA pairing, not changes in PHB protein sequence, causes the developmental defects in phb-d mutants. In planta, disrupting miRNA pairing near the center of the miRNA complementary site had far milder developmental consequences than more distal mismatches. These differences correlated with differences in miRNA-directed cleavage efficiency in vitro, where mismatch scanning revealed more tolerance for mismatches at the center and 3′ end of the miRNA compared to mismatches to the miRNA 5′ region. In this respect, miR165/166 resembles animal miRNAs in its pairing requirements. Pairing to the 5′ portion of the small silencing RNA appears crucial regardless of the mode of post-transcriptional repression or whether it occurs in plants or animals, supporting a model in which this region of the silencing RNA nucleates pairing to its target

    Clinical doses of radiation reduce collagen matrix stiffness

    No full text
    Cells receive mechanical cues from their extracellular matrix (ECM), which direct migration, differentiation, apoptosis, and in some cases, the transition to a cancerous phenotype. As a result, there has been significant research to develop methods to tune the mechanical properties of the ECM and understand cell-ECM dynamics more deeply. Here, we show that ionizing radiation can reduce the stiffness of an ex vivo tumor and an in vitro collagen matrix. When non-irradiated cancer cells were seeded in the irradiated matrix, adhesion, spreading, and migration were reduced. These data have ramifications for both in vitro and in vivo systems. In vitro, these data suggest that irradiation may be a method that could be used to create matrices with tailored mechanical properties. In vivo, these suggest that therapeutic doses of radiation may alter tissue mechanics directly

    Clinical doses of radiation reduce collagen matrix stiffness

    No full text
    Cells receive mechanical cues from their extracellular matrix (ECM), which direct migration, differentiation, apoptosis, and in some cases, the transition to a cancerous phenotype. As a result, there has been significant research to develop methods to tune the mechanical properties of the ECM and understand cell-ECM dynamics more deeply. Here, we show that ionizing radiation can reduce the stiffness of an ex vivo tumor and an in vitro collagen matrix. When non-irradiated cancer cells were seeded in the irradiated matrix, adhesion, spreading, and migration were reduced. These data have ramifications for both in vitro and in vivo systems. In vitro, these data suggest that irradiation may be a method that could be used to create matrices with tailored mechanical properties. In vivo, these suggest that therapeutic doses of radiation may alter tissue mechanics directly

    Coastal landfills and rising sea levels: a challenge for the 21st century

    Get PDF
    Populated coastal areas worldwide have a legacy of numerous solid waste disposal sites. At the same time, mean sea level is rising and likely to accelerate, increasing flooding and/or erosion. There is therefore concern that landfill sites located at and near the coast pose a growing risk to the environment from the potential release of liquid and solid waste materials. This paper aims to assess our present understanding of this issue as well as research and practise needs by synthesising the available evidence across a set of developed country cases, comprising England, France, Germany, the Netherlands and the USA (Florida). Common insights gained here include: (1) a lack of data and limited appreciation of waste release from coastal landfill as a potential problem; (2) recognition of the scale and diversity of coastal landfill waste within a range of generic settings (or situations); and (3) a lack of robust protocols that allow the impact of different categories of waste release to the coast to be assessed in a consistent and evidence-based manner, most particularly for solid waste. Hence, a need for greater understanding of the following issues is identified: (1) the amount, character and impact of waste that could be released from landfill sites; (2) the acceptability and regulation of waste eroding from coastal landfills; (3) present and future erosion rates at landfill sites suggesting the need for more monitoring and relevant predictive tools; (4) the full range of possible management methods for dealing with waste release from landfills and the science to support them; and (5) relevant long-term funding mechanisms to address this issue. The main focus and experience of current management practise has been protection/retention, or removal of landfills, with limited consideration of other feasible solutions and how they might be facilitated. Approaches to assess and address solid waste release to the marine/coastal environment represent a particular gap. Lastly as solid waste will persist indefinitely and sea levels will rise for many centuries, the long timescale of this issue needs wider appreciation and should be included in coastal and waste policy

    Coastal landfills and rising sea levels: A challenge for the 21st century

    Get PDF
    Populated coastal areas worldwide have a legacy of numerous solid waste disposal sites. At the same time, mean sea level is rising and likely to accelerate, increasing flooding and/or erosion. There is therefore concern that landfill sites located at and near the coast pose a growing risk to the environment from the potential release of liquid and solid waste materials. This paper aims to assess our present understanding of this issue as well as research and practice needs by synthesizing the available evidence across a set of developed country cases, comprising England, France, Germany, the Netherlands, and the United States (Florida). Common insights gained here include: (1) a lack of data and limited appreciation of waste release from coastal landfill as a potential problem; (2) recognition of the scale and diversity of coastal landfill waste within a range of generic settings (or situations); and (3) a lack of robust protocols that allow the impact of different categories of waste release to the coast to be assessed in a consistent and evidence-based manner, most particularly for solid waste. Hence, a need for greater understanding of the following issues is identified: (1) the amount, character and impact of waste that could be released from landfill sites; (2) the acceptability and regulation of waste eroding from coastal landfills; (3) present and future erosion rates at landfill sites suggesting the need for more monitoring and relevant predictive tools; (4) the full range of possible management methods for dealing with waste release from landfills and the science to support them; and (5) relevant long-term funding mechanisms to address this issue. The main focus and experience of current management practice has been protection/retention, or removal of landfills, with limited consideration of other feasible solutions and how they might be facilitated. Approaches to assess and address solid waste release to the marine/coastal environment represent a particular gap. Lastly, as solid waste will persist indefinitely and sea levels will rise for many centuries, the long timescale of this issue needs wider appreciation and should be included in coastal and waste policy
    corecore